K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

Đáp án A

Gọi M, N lần lượt là hai điểm đối xứng với A qua Oz và mặt phẳng (P) ( hình vẽ bên: Điểm A nằm giữa Oz, (P) vì O, A cùng phía với (P) và  .

Khi đó 

Suy ra 

Hay B là hình chiếu của A trên Oz, Vậy B(0;0;1)

4 tháng 11 2018

Đáp án C

Vì OA, OB, OC đôi một vuông góc với nhau  1 d 2 = 1 O A 2 + 1 O B 2 + 1 O C 2

Với d là khoảng cách từ  O  -> (ABC) suy ra  1 d 2 = 1 a 2 + 1 b 2 + 1 c 2

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức, ta có     x 2 a + y 2 b + z 2 c ≥ x + y + z 2 a + b + c

Vậy  d   m a x   = 1 3

18 tháng 11 2018

30 tháng 12 2021

chọn a

21 tháng 2 2019

14 tháng 8 2018

Đáp án D

Ta có d đi qua N(2;5;2) chỉ phương  u d → = ( 1 ; 2 ; 1 )  đi qua N'(2;1;2) chỉ phương   u d ' → = ( 1 ; - 2 ; 1 )

Gọi (R) là mặt phẳng chứa A và d, gọi (Q) là mặt phẳng chứa A¢ và d¢

Từ giả thiết ta nhận thấy điểm M nằm trong các mặt phẳng (R), (Q) nên đường thẳng cố định chứa M chính là giao tuyến của các mặt phẳng (R), (Q).

Vậy (R) đi qua N(2;5;2) có cặp chỉ phương là  u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )

(R) đi qua  A(a;0;0) => a=2

Tương tự (Q) đi qua N'(2;1;2) có cặp chỉ phương  u d → = ( 1 ; 2 ; 1 ) ,  u → = ( 15 ; - 10 ; - 1 )

(Q) đi qua  B(0;0;b) => b=4

Vậy T = a+b=6

4 tháng 10 2019

19 tháng 1 2018

26 tháng 7 2017

 

12 tháng 5 2019

Đáp án B

Phương pháp: (P) cách đều  B, C

TH1: BC//(P)

TH2: I ∈ (P)với I là trung điểm của BC.

Cách giải:

(P) cách đều B, C

TH1: BC//(P)

=> (P) đi qua O và nhận  b → = ( 6 ; - 3 ; - 4 ) là 1 VTPT

TH2: I(P) với I là trung điểm của BC.

Dựa vào các đáp án ta chọn được đáp án B.

21 tháng 9 2018

Đáp án A

Theo giả thiết 4 điểm M, N, B, C đồng phẳng nên