Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Giả sử đường thẳng (d) cắt trục Oz tại điểm B(0;0;b)
Cách giải:
Giả sử đường thẳng (d) cắt trục Oz tại điểm B(0;0;b)
Chọn B
Gọi B(0; 0; b) là giao điểm của đường thẳng d và trục Oz.
Vì đường thẳng d song song với mặt phẳng (P) nên:
Câu 1:
Do \(MA=MB\Rightarrow M\) là trung điểm AB
Gọi \(B\left(a;0;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=6-a\\y_A=2y_M-y_B=4\\z_A=2z_M-z_B=2\end{matrix}\right.\)
Mà \(A\in\left(Q\right)\)
\(\Rightarrow6-a+4+2-7=0\Rightarrow a=5\)
\(\Rightarrow\left\{{}\begin{matrix}B\left(5;0;0\right)\\A\left(1;4;2\right)\end{matrix}\right.\) \(\Rightarrow AB=6\)
Câu 2:
Gọi (Q) là mặt phẳng chứa A và song song (P)\(\Rightarrow d\in\left(Q\right)\)
Phương trình (Q):
\(2\left(x-1\right)+1\left(y-2\right)-4\left(z-3\right)=0\)
\(\Leftrightarrow2x+y-4z+8=0\)
Giao điểm B của (Q) và trục Ox: \(2x+8=0\Rightarrow x=-4\) \(\Rightarrow B\left(-4;0;0\right)\)
\(\Rightarrow d\) nhận \(\overrightarrow{u_d}=\overrightarrow{BA}=\left(5;2;3\right)\) là một vtcp
Phương trình d: \(\left\{{}\begin{matrix}x=-4+5t\\y=2t\\z=3t\end{matrix}\right.\)
con hươu A nha,tick cho 1 cái đi,ko đúng ko tick cũng được nha
\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)
=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)
=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)
=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)
=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)
Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít
Chọn B
Gọi B (0;0;b) là giao điểm của đường thẳng d và trục Oz.
Vì đường thẳng d song song với mặt phẳng (P) nên: