Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có , suy ra bốn điểm A, B, C, D không đồng phẳng. Gọi (P) là mặt phẳng cách đều bốn điểm A, B, C, D.
TH1: Có một điểm nằm khác phía với ba điểm còn lại so với (P). Có bốn mặt phẳng thỏa mãn.
TH2: Mỗi phía của mặt phẳng (P) có hai điểm. Có ba mặt phẳng thỏa mãn.
Vậy có bảy mặt phẳng thỏa mãn.
Chọn D
Gọi điểm cần tìm là M (x0; y0; z0)
Phương trình mặt phẳng (ABC) là:
Phương trình mặt phẳng (BCD) là: x = 0
Phương trình mặt phẳng (CDA) là: y = 0
Phương trình mặt phẳng (DAB) là: z= 0.
Ta có M cách đều 4 mặt phẳng (ABC), (CDA), (BCD), (DAB) nên:
Ta có các trường hợp sau:
Vậy có 8 điểm M thỏa mãn bài toán.
Đáp án A.
Ta có
Suy ra phương trình mặt phẳng (ABC) là 5x -2y -z -6 =0
Do đó, điểm D(4;3;8) thuộc mặt phẳng (ABC).
Vậy có vô số mặt phẳng cách đều bốn điểm đã cho.
Đáp án B
Phương pháp: (P) cách đều B, C
TH1: BC//(P)
TH2: I ∈ (P)với I là trung điểm của BC.
Cách giải:
(P) cách đều B, C
TH1: BC//(P)
=> (P) đi qua O và nhận b → = ( 6 ; - 3 ; - 4 ) là 1 VTPT
TH2: I ∈ (P) với I là trung điểm của BC.
Dựa vào các đáp án ta chọn được đáp án B.
Đáp án B.
Cách 1: Ta có
Cách 2:
Theo công thức phương trình đoạn chắn ta có phương trình
Suy ra phương trình pháp tuyến của (ABC) là
Đáp án B
Do đó, 5 điểm O, A, B, C, D tạo thành tứ diện như hình vẽ bên
Vậy có tất cả 5 mặt phẳng cần tìm đó là:
Mặt phẳng (OAC) đi qua 3 điểm O, A, C
Bốn mặt phẳng là các mặt bên của tứ diện O.BCD đi qua 3 điểm trong 5 điểm O, A, B, C, D