K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

Đáp án C.

Gọi C là trọng tâm của tam giác ABC ⇒ G 2 ; 1 ; 3  

Khi đó M A → + M B → + M C → = 3 M G → + G A → + G B → + G C → ⏟ 0 = 3 M G → = 3 M G . 

Suy ra M G m i n ⇔  M là hình chiếu của G trên mp (Oxy) ⇒ M 2 ; 1 ; 0 .

8 tháng 1 2017

14 tháng 12 2018

Chọn D

5 tháng 1 2019

2 tháng 7 2019

Chọn A .

Phương pháp: S.

28 tháng 8 2019

12 tháng 10 2018

Gọi I(x;y;z) là điểm thỏa mãn 3 I A ⇀ - 2 I B ⇀ = 0 → ⇔ 3 I A ⇀ = 2 I B ⇀

Ta có 

Khi đó  3 I A ⇀ = 2 I B ⇀

Ta có:

 (vì 3 I A ⇀ - 2 I B ⇀ = 0 ⇀ )

Khi đó | 3 M A ⇀ - 2 M B ⇀ | = | M I ⇀ | = M I  nhỏ nhất khi M là hình chiếu của I trên mặt phẳng (P)

Phương trình đường thẳng d qua I(-3;-2;8) và vuông góc với (P) 

Suy ra M = d ∩ ( P )  nên tọa độ điểm M là nghiệm của hệ

Từ đó 

⇒ S = 9 a + 3 b + 6 c = - 33 - 8 + 44 = 3

Chọn đáp án B.

31 tháng 1 2017

Đáp án là C

10 tháng 1 2019

Đáp án D

Phương pháp giải: Xét đẳng thức vectơ, đưa về hình chiếu của điểm trên mặt phẳng

Lời giải:

Gọi M(a;b;c) thỏa mãn đẳng thức vectơ  2 M A   → + M B → + M C → = 0 →

Khi đó  S = 2 N A 2 + N B 2 + N C 2 =  2 N A 2 → + N B 2 → + N C 2 → = 2 M N → + M A → 2 + M N → + M B → 2 + M N → + M C → 2

=  4 M N 2 + 2 N M → 2 M A → + M B → + M C → + 2 M A 2 → + M B 2 → + M C 2 →

4 M N 2 + 2 M A 2 → + M B 2 → + M C 2 →

Suy ra Smin ó MNmin ó N là hình chiếu của M trên(P) => MN ⊥ (P)

Phương trình đường thẳng  MN là 

Mà m ∈ mp(P) suy ra t–(1–t)+t+2+2=0 ó t = –1 => N(–1;2;1)

14 tháng 4 2019

Chọn D