Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Đặt M(x;y;z). Lập hệ 3 phương trình ba ẩn x,y,z từ phương trình mặt phẳng (P) và điều kiện MA=MB, MA=MC
Đáp án B
Phương pháp: (P) cách đều B, C ó d(B;(P)) = d(c;(P))
TH1: BC // (P)
TH2: I ∈ (P), với I là trung điểm của BC
Cách giải:
Ta có:
(P) cách đều B, C ó d(B;(P)) = d(c;(P))
TH1: BC // (P)
=> (P) đi qua O và nhận là 1 VTPT
TH2: I ∈ (P) với I là trung điểm của BC
=> (P): 6x – 3y + 4z = 0
Dựa vào các đáp án ta chọn được đáp án B
Đáp án A
Phương trình mặt phẳng A B C : x a + y b + z c = 1
Vì I ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 6 a b c 3 ⇔ a b c ≥ 162
Thể tích khối tứ diện OABC được tính là V = O A . O B . O C 6 = a b c 6 ≥ 162 6 = 27
Dấu “=” xảy ra khi 1 a = 2 b = 3 c = 1 3 ⇒ a = 3 b = 6 c = 9
Kiểm tra thấy phương án A không đúng
Đáp án C.
Do M ∈ O z ⇒ M 0 ; 0 ; a ⇒ M A → = 1 ; 1 ; 3 - a , M B → = 0 ; 2 ; 1 - a , M C → = - 2 ; 0 ; - 3 - a
⇒ 2 M A → + M B → + M C → = 0 ; 4 ; - 4 a + 4 ⇒ 2 M A → + M B → + M C → = 4 a - 1 2 + 1 ≥ 4 xảy ra khi a = 1.
Do đó tọa độ điểm M là M(0;0;1).