Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Ta có
Do SA vuông góc với (ABC) nên một VTCP của đường thẳng SA được chọn là
Đường thẳng SA qua A(1;0;2) và có VTCP u → = ( 3 ; 6 ; - 6 ) nên có phương trình tham số là:
Gọi M là trung điểm BC khi đó M là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là đường thẳng qua M và song song với AS nên d ⊥ (ABC), suy ra d là trục đường tròn ngoại tiếp tam giác ABC.
Trong mặt phẳng (SAM) vẽ đường trung trực của SA cắt d tại I và cắt SA tại N.
Mặt phẳng (ABC) qua A và có một VTPT
nên có phương trình tổng quát là:
mà cao độ của S âm nên S(4;5;-4) thỏa yêu cầu bài toán.
Gọi B(x;y), ta có \(OA\perp OC\) nên OABC là hình chữ nhật =>\(\overrightarrow{AB}=\overrightarrow{OC}\) \(\Leftrightarrow\begin{cases}x-2=0\\y-0=4\\z-0=0\end{cases}\) \(\Rightarrow B\left(2;4;0\right)\)
Ta có \(\overrightarrow{OB}=\left(2;4;0\right);\overrightarrow{OD}=\left(0;0;4\right);\overrightarrow{CB}=\left(2;0;0\right);\overrightarrow{CD}=\left(0;-4;4\right)\)
Do đó \(\overrightarrow{OB}.\overrightarrow{OD}=0\) và \(\overrightarrow{CB}.\overrightarrow{CD}=0\Rightarrow\widehat{BOD}=\widehat{BCD}=90^0\)
Suy ra mặt cầu đi qua 4 điểm O, B, C, D có tâm I là trung điểm của BD, bán kính R=OI
Ta có \(I\left(1;2;2\right);R=OI=\sqrt{1+2^2+2^2}=3\)
Do đó mặt cầu (S) có phương trình : \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2=9\)
Đáp án A
Phương pháp:
+) Viết phương trình mặt phẳng (ABC) ở dạng đoạn chắn, thay tọa độ điểm M vào pt mặt phẳng (ABC).
+) (ABC) tiếp xúc với mặt cầu (S) tâm I bán kính R <=> d(I;(ABC))=R
Cách giải:
(ABC) tiếp xúc với mặt cầu (S) có tâm I và bán kính R = 72 7
Đáp án B
Vì DA, DB,DC đôi 1 vuông góc, D khác O suy ra D đối xứng với O qua mp (ABC)
Mp (ABC) có dạng x+y+z+2=0
Suy ra D
Trung điểm K (0;-1;-1) của BC
suy ra đường thẳng đi qua K và song song với AD có (d1)
Trung điểm P của AD
suy ra đường thẳng đi qua P và song song với DK có ptđt (d2)
Tâm I là giao của d 1 , d 2 suy ra I suy ra S=a+b+c=-1