K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 2 2021

a. (P) vuông góc denta nên nhận (1;2;3) là 1 vtpt

Phương trình (P):

\(1\left(x-2\right)+2\left(y-1\right)+3\left(z-3\right)=0\)

\(\Leftrightarrow x+2y+3z-13=0\)

b. \(\overrightarrow{AB}=\left(1;2;-1\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{n_{\left(P\right)}}\right]=\left(3;-2;-1\right)\)

Phương trình mp:

\(3\left(x-1\right)-2\left(y+1\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x-2y-z-3=0\)

NV
27 tháng 2 2021

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)

7 tháng 2 2019

Đáp án : A

7 tháng 11 2019

Đáp án D

Do mặt phẳng (Q) chứa A,B và vuông góc với mặt phẳng (P)

Do đó (Q): 3x-2y-z-3=0

25 tháng 9 2017

Chọn B

Δ có vectơ chỉ phương  và đi qua A (1;1;-2) nên có phương trình:

11 tháng 5 2019

Chọn A.

Mặt phẳng (P) có vectơ pháp tuyến 

Vì ∆ vuông góc với (P) nên d có vectơ chỉ phương 

∆ đi qua điểm M(-2;1;1) và có vectơ chỉ phương  u ∆ →

Vậy phương trình chính tắc của ∆ là  x + 2 2 = y - 1 - 1 = z - 1 1

28 tháng 7 2017

Đáp án D

Từ giả thiết suy ra:

Mặt khác mặt phẳng (P) đi qua điểm B(2 ;1 ;3) nên ta có phương trình của mặt phẳng (P) là:

4(x - 2) + 5(y - 1) + 3(z - 3) = 0  4x + 5y + 3z - 22 = 0

1 tháng 3 2017

Chọn B.

26 tháng 2 2019

2 tháng 5 2019

Chọn C

Gọi giao điểm của Δ và d là B nên ta có: B (3+t;3+3t;2t) 

Vì đường thẳng Δ song song với mặt phẳng (α) nên:

 

Phương trình đường thẳng Δ đi qua A và nhận