K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2016

Phương trình tiếp tuyến tại M0 có dạng: y = k(x – x0) + y0  (*)

Với x0 là hoành độ tiếp điểm;

Với y0 = f(x0) là tung độ tiếp điểm;

Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.

Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$

\(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)

Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$

b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).

Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)

\((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).

Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)

\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)

c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$

Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$

$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)

\(\Leftrightarrow 2-2a+2b=13-4a-6b\)

\(\Leftrightarrow 11-2a-8b=0(2)\)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)

15 tháng 1 2017

con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào

8 tháng 4 2016

đăng hoài

7 tháng 5 2016

a) 3(x - 2) - 4(2x + 1) - 5(2x + 3) = 50

3x - 6 - 8x - 4 - 10x - 15 = 50

(3x - 8x - 10x) - (6 + 4 + 15) = 50

-15x + 25 = 50

-15x = 50 - 25

-15x = 25

x = 25 : (-15)

x = -5/3

Chúc bạn học tốtok

 

9 tháng 3 2016

 \(Q\left(x\right)=\)\(x^2+2x^4+4x^3-5x^6+3x^2-4x-1\) \(=\) \(-5x^6+2x^4+4x^3+4x^2-4x-1\)
Vậy, các hệ số khác 0 : -Hệ số của \(x^6\) là \(-5\)
-Hệ số của \(x^4\) là \(2\)
-Hệ số của \(x^3\) là \(4\)
-Hệ số của \(x^2\) là \(4\)
-Hệ số của \(x\) là \(-4\)
-Hệ số tự do là \(-1\)
Hệ số bằng 0 là hệ số của \(x^5\)

 

17 tháng 1 2016

Cẩm Nhung hả

 

17 tháng 1 2016

Giup to!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!huhugianroi

26 tháng 2 2016

a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)

b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)

c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)

d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)

                                           \(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)

14 tháng 5 2018

a,

4x - 7 > 0

↔ 4x > 7

↔ x > \(\dfrac{7}{4}\)

Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }

b,

-5x + 8 > 0

↔ 8 > 5x

\(\dfrac{8}{5}\) > x

Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }

c,

9x - 10 ≤ 0

↔ 9x ≤ 10

↔ x ≤ \(\dfrac{10}{9}\)

Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }

d,

( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10

↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10

↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x

↔ -5 ≤ 5x

↔ -1 ≤ x

Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}

19 tháng 1 2017