Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp:
Mặt phẳng có 1 VTPT là n → = ( A ; B ; C )
Cách giải:
Mặt phẳng (P): 2x – y +3z – 2 = 0 có một véc tơ pháp tuyến n → = ( 2 ; - 1 ; 3 )
Đáp án D
Mặt phẳng cần tìm sẽ vuông góc với (ABM). Một vecto pháp tuyến của nó là tích có hướng của vecto pháp tuyến mặt phẳng (ABM) và A B →
Cũng có thể làm như sau: Khoảng cách lớn nhất là MH với H là hình chiếu vuông góc của M lên đường thẳng AB. Ta tìm được H ( 3 ; − 3 ; − 10 ) .
Đáp án A.
Phương pháp
Cho mặt phẳng P : a x + b y + c z + d = 0 thì VTPT của (P) là: n → = a ; b ; c
Cách giải
Theo đề bài ta thấy VTPT của (P): n → = 1 ; 0 ; − 3
Đáp án C.
Phương pháp:
Mặt phẳng P : A x + B y + C z + D = 0 có 1 VTPT là n → = A ; B ; C .
Cách giải:
P : x − 4 y + 3 z − 2 = 0 có một vecto pháp tuyến là n 3 → = − 1 ; 4 ; − 3 .
Đáp án A
( 4 ; − 2 ; 2 ) = 2 ( 2 ; − 1 ; 1 ) ⇒ ( 4 ; − 2 ; 2 ) là một VTPT của (P)
Đáp án C.
Ta dễ có n → = 1 ; − 2 ; 0 .