Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt cầu (S) có tâm I(3, -2, 1) và bán kính R = 10.
Khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (α) là:
d(I, α) = ∣∣ ∣∣2.3−2.(−2)−1+9√22+(−2)2+(−1)2∣∣ ∣∣=183=6|2.3−2.(−2)−1+922+(−2)2+(−1)2|=183=6
Vì d(I, α) < R ⇒⇒ Mặt phẳng (α) cắt mặt cầu (S) theo đường tròn (C) có phương trình (C):
{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100
Tâm K của đường tròn (C) là hình chiếu vuông góc của tâm I của mặt cầu trên mặt phẳng (α).
Mặt phẳng (α) có vectơ pháp tuyến →nn→ = (2, -2. -1).
Đường thẳng d qua I và vuông góc với (α) nhận →nn→ = (2, -2, -1) làm vectơ chỉ phương và có phương trình d :
⎧⎪⎨⎪⎩x=3+2ty=−2−2tz=1−t{x=3+2ty=−2−2tz=1−t
Thay t = -2 vào phương trình của d, ta được toạ độ tâm K của đường tròn (C).
⎧⎪⎨⎪⎩x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3{x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3
⇒⇒ K(-1, 2, 3)
Ta có: IK2 = (-1 - 3)2 + (2 + 2)2 + (3 - 1)2 = 36.
Bán kính r của đường tròn (C) là:
r2 = R2 - IK2 = 102 - 36 = 64 ⇒⇒ r= 8
Giải
Mặt cầu (S) có tâm I(3, -2, 1) và bán kính R = 10.
Khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (α) là:
d(I, α) = ∣∣ ∣∣2.3−2.(−2)−1+9√22+(−2)2+(−1)2∣∣ ∣∣=183=6|2.3−2.(−2)−1+922+(−2)2+(−1)2|=183=6
Vì d(I, α) < R ⇒⇒ Mặt phẳng (α) cắt mặt cầu (S) theo đường tròn (C) có phương trình (C):
{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100
Tâm K của đường tròn (C) là hình chiếu vuông góc của tâm I của mặt cầu trên mặt phẳng (α).
Mặt phẳng (α) có vectơ pháp tuyến →nn→ = (2, -2. -1).
Đường thẳng d qua I và vuông góc với (α) nhận →nn→ = (2, -2, -1) làm vectơ chỉ phương và có phương trình d :
⎧⎪⎨⎪⎩x=3+2ty=−2−2tz=1−t{x=3+2ty=−2−2tz=1−t
Thay t = -2 vào phương trình của d, ta được toạ độ tâm K của đường tròn (C).
⎧⎪⎨⎪⎩x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3{x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3
⇒⇒ K(-1, 2, 3)
Ta có: IK2 = (-1 - 3)2 + (2 + 2)2 + (3 - 1)2 = 36.
Bán kính r của đường tròn (C) là:
r2 = R2 - IK2 = 102 - 36 = 64 ⇒⇒ r= 8
Gọi mặt phẳng là (P) dễ kí hiệu
\(d\left(M;\left(P\right)\right)=\frac{\left|-6+2+2-7\right|}{\sqrt{2^2+2^2+1}}=\frac{9}{3}=3\)
Áp dụng định lý Pitago:
\(R=\sqrt{3^2+4^2}=5\)
Phương trình mặt cầu:
\(\left(x+3\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=25\)
\(\Leftrightarrow x^2+y^2+z^2+6x-2y-4z-11=0\)
Mặt cầu tâm \(I\left(3;-2;1\right)\)
Mặt phẳng (P) nhận \(\left(1;2;2\right)\) là 1 vtpt
Gọi d là đường thẳng qua I và vuông góc (P) \(\Rightarrow\) M là giao điểm của d với mặt cầu (giao điểm nằm giữa I và H với H là giao của d và (P))
Phương trình tham số d: \(\left\{{}\begin{matrix}x=3+t\\y=-2+2t\\z=1+2t\end{matrix}\right.\)
H là giao d và (P) nên tọa độ thỏa mãn:
\(3+t+2\left(-2+2t\right)+2\left(1+2t\right)+11=0\Rightarrow t=-\frac{4}{3}\) \(\Rightarrow H\left(\frac{5}{3};-\frac{14}{3};-\frac{5}{3}\right)\)
M là giao d và (S) nên tọa độ thỏa mãn:
\(\left(3+t\right)^2+\left(-2+2t\right)^2+\left(1+2t\right)^2-6\left(3+t\right)+4\left(-2+2t\right)-2\left(1+2t\right)+5=0\)
\(\Leftrightarrow9t^2-9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(4;0;3\right)\\M\left(2;-4;-1\right)\end{matrix}\right.\)
M nằm giữa I và H nên \(M\left(2;-4;-1\right)\) là điểm cần tìm
\(\overrightarrow{AB}=\left(-1;-2;1\right)\); \(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)
Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)
\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)
Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)
Phương trình mặt cầu (S) cần tìm có dạng :
\(x^2+y^2+z^2-2ax-2by-2cz+d=0\)
Vì \(A\in\left(S\right)\) nên ta có : \(1-2a+d=0\left(1\right)\)
\(A\in\left(S\right)\) nên ta có : \(4+4b+d=0\left(2\right)\)
a) Tâm \(I\left(3;-1;8\right)\), bán kính \(r=10\)
b) Tâm \(I\left(-2;1;3\right)\), bán kính \(r=8\)