K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

Chọn B

Mặt cầu (S) có tâm I (3;1;0) và bán kính là R = 2.

Gọi H (1+2t;-1+t;-t) là hình chiếu của I trên d.

Gọi (Q) là mặt phẳng chứa d.

Bán kính đường tròn giao tuyến của mặt phẳng chứa d và mặt cầu (S) là , suy ra r nhỏ nhất khi d (I, (Q)) lớn nhất.

Gọi M là hình chiếu của I trên (Q).

Ta có d (I, (Q)) = IM IH  suy ra d (I, (Q)) lớn nhất khi d (I, (Q)) = IH, lúc đó mặt phẳng (Q) qua H (3;0;-1) và có một véc tơ pháp tuyến là 

Phương trình mặt phẳng (Q): y+z+1=0.

10 tháng 5 2019

19 tháng 1 2017

1 tháng 6 2018

Chọn C

* Ta có:  trong đó a;b;c không đồng thời bằng 0. Mặt cầu (S) có tâm I (1;2;3) và bán kính R=5.

Do mặt phẳng (P) chứa đường thẳng AB nên ta có:

* Bán kính đường tròn giao tuyến là  trong đó

Để bán kính đường tròn nhỏ nhất điều kiện là d lớn nhất  lớn nhất  lớn nhất.

Coi hàm số  là một phương trình ẩn c ta được

5mc²-2 (4m+1)c+ (8m-3)=0,

phương trình có nghiệm c  lớn nhất

<=> c = 1 => a = 0 => M = 2a + b – c = 1

15 tháng 12 2017

27 tháng 8 2018

Đáp án A

Vì mặt phẳng (P) đi qua A, B nên

3 a - 2 b + 6 c - 2 = 0 b = 2 ⇔ a = 2 - 2 c b = 2 ⇒ ( P ) :   ( 2 - 2 c ) x + 2 y + c z = 0

Khoảng cách từ tâm I (1;2;3) của (S) đến (P) là:

d(I,(P))= ( 2 - 2 c ) + 2 . 2 + c . 3 - 2 ( 2 - 2 c ) 2 + 2 2 + c 2 = c + 4 5 c 2 - 8 c + 8

Khi đó bán kính của đường tròn giao tuyến là: 

r= 25 - ( c + 4 ) 2 5 c 2 - 8 c + 8 = 124 c 2 - 208 c + 184 5 c 2 - 8 c + 8

Để r đạt giá trị nhỏ nhất thì hàm số

f(t)= 124 t 2 - 208 t + 184 5 t 2 - 8 t + 8 trên [1;+ ∞ ) phải nhỏ nhất

Ta có: f'(t)= 48 t 2 + 144 t - 192 ( 5 t 2 - 8 t + 8 ) 2 ,

f'(t)=0 ⇔

Khi đó hàm số đạt giá trị nhỏ nhất tại t=1 ⇒ c=1

Ta có: T=a+b+c=2-2c+2=4-c=3

30 tháng 8 2019

Chọn B

Mặt cầu (S) có tâm I(1;-1;2) và bán kính 

28 tháng 7 2018

Đáp án A.

12 tháng 8 2019

14 tháng 7 2019

Đáp án A