K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

Chọn A

Gọi M(3-t; 3+2t; 2-t) là trung điểm cạnh AC, khi đó C(4-2t; 3+4t; 1-2t)

Mặt khác C thuộc đường phân giác trong góc C là tam giác nên 

Gọi A' đối xứng với A  qua phân giác trong góc C => A' ∈ CB

Mặt phẳng  α qua A  và vuông góc với đường phân giác trong góc C:

Mặt khác : H là trung điểm AA' nên A'(2;5;1) 

Phương trình đường thẳng BC qua A', C:

6 tháng 10 2018

19 tháng 8 2019

Đáp án D.

17 tháng 8 2019

Đáp án A

Vì ABC.A’B’C’ là lăng trụ đứng, đáy là tam giác vuông cân => C'(0;2;2)

 

DD
11 tháng 1 2023

a) \(Ox:\left\{{}\begin{matrix}x=t\\y=0\\z=0\end{matrix}\right.\).

Lấy điểm \(M\left(1;0;0\right)\in Ox\).

\(d\left(A,Ox\right)=\dfrac{\left|\left[\overrightarrow{MA},\overrightarrow{u_{Ox}}\right]\right|}{\left|\overrightarrow{u_{Ox}}\right|}=\sqrt{10}\).

\(d\left(B,Ox\right)=\dfrac{\left|\left[\overrightarrow{MA},\overrightarrow{u_{Ox}}\right]\right|}{\left|\overrightarrow{u_{Ox}}\right|}=\sqrt{10}\)

Do đó hai điểm \(A,B\) cách đều trục \(Ox\).

b) Điểm \(C\in Oz\) nên tọa độ điểm \(C\) có dạng \(\left(0;0;c\right)\).

Tam giác \(ABC\) vuông tại \(C\) nên \(CA\perp CB\)

suy ra \(\overrightarrow{CA}.\overrightarrow{CB}=0\)

\(\Leftrightarrow1.\left(-2\right)-3.1-\left(1+c\right).\left(3-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}c=-2\\c=4\end{matrix}\right.\).

c) Mặt phẳng \(\left(Oyz\right)\)\(x=0\)

Hình chiếu của \(A,B\) trên \(\left(Oyz\right)\) lần lượt là \(A'\left(0;-3;-1\right)\)\(B'\left(0;1;3\right)\)

Phương trình hình chiếu của đường thẳng \(AB\) trên \(\left(Oyz\right)\) là phương trình của đường thẳng \(A'B'\).

d) Gọi tọa độ tâm thỏa mãn yêu cầu bài toán là \(I\left(0;a;b\right)\).

Có \(IO=IA=IB\) suy ra 

\(a^2+b^2=1^2+\left(a+3\right)^2+\left(b+1\right)^2=2^2+\left(a-1\right)^2+\left(b-3\right)^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-47}{16}\\b=\dfrac{53}{16}\end{matrix}\right.\).

5 tháng 9 2019

4 tháng 5 2019

Đáp án C

18 tháng 12 2018

Chọn C

Phương trình đường thẳng qua hai điểm A, O có dạng 

Gọi (P) là mặt phẳng cùng đi qua hai điểm A, O nên (P) : m (x-y)+nz=0, m²+n² > 0. Khi đó véctơ pháp tuyến của (P) có dạng 

Vậy một véctơ pháp tuyến của một trong hai mặt phẳng đó là 

14 tháng 8 2018

Đáp án D

Ta có d đi qua N(2;5;2) chỉ phương  u d → = ( 1 ; 2 ; 1 )  đi qua N'(2;1;2) chỉ phương   u d ' → = ( 1 ; - 2 ; 1 )

Gọi (R) là mặt phẳng chứa A và d, gọi (Q) là mặt phẳng chứa A¢ và d¢

Từ giả thiết ta nhận thấy điểm M nằm trong các mặt phẳng (R), (Q) nên đường thẳng cố định chứa M chính là giao tuyến của các mặt phẳng (R), (Q).

Vậy (R) đi qua N(2;5;2) có cặp chỉ phương là  u d → = ( 1 ; 2 ; 1 ) , u → = ( 15 ; - 10 ; - 1 )

(R) đi qua  A(a;0;0) => a=2

Tương tự (Q) đi qua N'(2;1;2) có cặp chỉ phương  u d → = ( 1 ; 2 ; 1 ) ,  u → = ( 15 ; - 10 ; - 1 )

(Q) đi qua  B(0;0;b) => b=4

Vậy T = a+b=6