Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt cầu (S) có tâm I (1;-2;3) và bán kính R= 3√3.
Vì (α): ax+by-z+c=0 đi qua hai điểm A (0; 0; -4), B (2; 0; 0) nên c = -4 và a = 2.
Suy ra (α): 2x+by-z-4=0.
Đặt IH = x, với 0 < x < 3√3 ta có
Thể tích khối nón là
Đáp án A
Ba điểm A, M, B nằm trên mặt cầu (S) thỏa mãn điều kiện = 90°
Nên tam giác AMB vuông tại M.
Ta có:
Dấu bằng xáy ra khi và chỉ khi tam giác MAB vuông cân tại M và AB là một đường kính của mặt cầu (S). Vậy đáp án đúng là A.
( x + 5 ) 2 + ( y + 5 ) 2 + ( z - 14 ) 2 = 324
Dấu bằng đạt tại
Mặt cầu (S) có tâm I(2;-1;2), mặt phẳng (P) có VTPT\(\overrightarrow{n}\)=(1;-1;2). Gọi điểm C(x;y;z) ta có C∈ (S) nên \(\left(x-2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=4\left(1\right)\)
Do CD là đường kính của mặt cầu (S) nên I là trung điểm của CD
=> D(4-x; -y -2; 4-z)
Mà theo đề có CD//(P) nên
\(\overrightarrow{IC}\perp\overrightarrow{n}\Leftrightarrow\overrightarrow{IC}.\overrightarrow{n}=0\) <=> \(x-2-\left(y+1\right)+2\left(z-2\right)=0\left(2\right)\)
Ta có: \(\overrightarrow{AB}=\left(1;-1;-1\right);\overrightarrow{AC}=\left(x;y-1;z-1\right);\overrightarrow{AD}=\left(4-x;y-3;3-z\right)\)
\(\left|\overrightarrow{AC;}\overrightarrow{AD}\right|=\left(2y+4z-6;-2x+4z-4;-4x-y+4\right)\)
\(\overrightarrow{AB}\left|\overrightarrow{AC};\overrightarrow{AD}\right|=2x+4z-6+\left(-1\right)\left(-2x+4z-4\right)+\left(-1\right)\left(-4x-4y+4\right)=6x+6y-6\)
Thể tích khối tứ diện ABCD là:
V = \(\dfrac{1}{6}\left|\overrightarrow{AB}\left[\overrightarrow{AC};\overrightarrow{AD}\right]\right|=\left|x+y-1\right|\)
Đặt : \(\left\{{}\begin{matrix}x-2=a\\y+1=b\\z-2=c\end{matrix}\right.\)
Từ (1) và (2) có hệ : \(\left\{{}\begin{matrix}a^2+b^2+c^2=4\\a-b+2c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=-2c\\ab=\dfrac{4-5c^2}{2}\end{matrix}\right.\)
V=|x+y-1| = |x-2+y +1| = |a+b| = \(\sqrt{\left(a-b\right)^2+4ab}\) = \(\sqrt{4c^2+2\left(4-5c^2\right)}=\sqrt{8-6c^2}\le2\sqrt{2}\)
Vậy GTLN của V là 2\(\sqrt{2}\) khi
\(\left\{{}\begin{matrix}z-2=0\\x-2=0\\\left(x-2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2+\sqrt{2};y=-1+\sqrt{2};z=2\\x=2-\sqrt{2};y=-1-\sqrt{2};z=2\end{matrix}\right.\)
Lời giải:
Ta có:
\((S): x^2+y^2+z^2-2x-2y-2z=0\)
\(\Leftrightarrow (x-1)^2+(y-1)^2+(z-1)^2=3\)
Do đó mặt cầu \((S)\) có tâm \(O=(1,1,1)\) và \(R=\sqrt{3}\)
Khi đó, dễ dàng nhận thấy \(A\in (S)\)
Ta có \(S_{OAB}=\frac{OA.OB.\sin \angle AOB}{2}\leq \frac{OA.OB.1}{2}=\frac{3}{2}\) vì \(\sin AOB\leq 1\)
Dấu bằng xảy ra khi \(\angle AOB=90^0\)
Đáp án D.