Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
*Gọi (Q) là mặt phẳng chứa d và vuông góc với mặt phẳng (Oxy). Để khoảng cách giữa hai đường thẳng d và ∆ nhỏ nhất thì ∆ chính là giao tuyến của hai mặt phẳng (Oxy) và mp (Q).
* Mặt phẳng (Oxy) có phương trình là z = 0 có VTPT n Oxy → = (0; 0; 1).
Đường thẳng d đi qua A(1;2; -3) và có VTCP u d → = (1; -2; 0)
Suy ra, VTPT của (Q) là n Q → = [ u d → ; n Oxy → ] = (2; 1; 0)
Phương trình mặt phẳng (Q) là: 2(x - 1) + 1(y - 2) + 0(z + 3) = 0
Hay 2x + y -4 =0
* Đường thẳng ∆ cần tìm là giao tuyến của hai mặt phẳng (Oxy) và (Q). Tập hợp các điểm thuộc ∆ là nghiệm hệ phương trình:
* Đặt x = 1 + t thay vào (1) ta được: y = 4 - 2x = 4 - 2(1 + t) = 2 - 2t
Suy ra, phương trình tham số của đường thẳng ∆ là:
Đáp án A
Ta có:
AM → (3; 2; 4)
Mặt phẳng (P) có vecto pháp tuyến là n p → (1; 1; 1)
Gọi H là hình chiếu vuông góc của A trên d. Ta có: d(A; d) = AH ≤ AM = 29
Dấu bằng xảy ra khi và chỉ khi H trùng M, nghĩa là d vuông góc với AM.
Ta có : Đường thẳng I cách đều 2 đường thẳng d và denta
\(\Rightarrow\dfrac{\left|2x+y-3\right|}{\sqrt{5}}=\dfrac{\left|4x+2y-1\right|}{2\sqrt{5}}\)
\(\Rightarrow2\left|2x+y-3\right|=\left|4x+2y-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+2y-6=4x+2y-1\\4x+2y-6=-4x-2y+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-6=1\left(L\right)\\8x+4y-7=0\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{8}{7}+\left(-\dfrac{4}{7}\right)+1=0\)
\(\Rightarrow a+b=-\dfrac{8}{7}-\dfrac{4}{7}=-\dfrac{12}{7}\)
Vậy ..
Đáp án B