K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

Đáp án D

Phương pháp:

- Phương trình đoạn chắn của mặt phẳng đi qua 3 điểm

A(a;0;0), B(0;b;0), C(0;0;c). (a, b,c khác 0):  x a + y b + z c = 1

- Sử dụng bất đẳng thức: 

Đẳng thức xảy ra khi và chỉ khi  x a = y b = z c

Cách giải:

A(a;0;0), B(0;b;0), C(0;0;c). (a, b,c > 0)

Mặt phẳng (ABC) có phương trình:  x a + y b + z c = 1

Khoảng cách từ O đến (ABC):

Ta có: 

Dấu “=” xảy ra khi và chỉ khi:

=> 

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

16 tháng 4 2017

Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)

\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)

Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)

Ta lại có : \(a+b+c⋮3\)

\(b⋮3\) ; \(c⋮3\)

\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)

Vậy a,b,c \(⋮3\)

4 tháng 5 2017

đây là toán lớp mấy vậy

AH
Akai Haruma
Giáo viên
3 tháng 2 2017

Lời giải:

Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:

\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)

Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$

Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$

Do đó ta có đpcm

19 tháng 3 2016

khó quá chịu thôi

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

a: Ta có: \(2x^3-5x^2+8x-3=0\)

\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x-3=0\)

=>2x-1=0

hay x=1/2

3 tháng 4 2016

b,(*)chứng minh a=-3b:

xét a-b=2(a+b)

=>a-b=2a+2b

=>-b-2b=2a-a

=>-3b=a (đpcm) 

(*) tính a/b :

Từ -3b=a=>a/b=-3

(*)tính a và b:

Ta có : a-b=a/b=-3

             và 2(a+b)=a/b=-3

hệ pt<=>a-b=-3                   

        và 2(a+b)=-3    

       <=>a-b=-3    (1)

        và a+b=-1,5   (2)

Lấy (1)+(2),vế theo vế ta đc:

(a-b)+(a+b)=-3+(-1,5)

=>a-b+a+b=-4,5

=>2a=-4,5=>a=-2,25

Mà a-b=-3=>b=0,75

Vậy (a;b)=(-2,25;0,75)

 

 

 

3 tháng 4 2016

c) vì (x-y2+z)2 >= 0 với mọi x;y;z

      (y-2)2 >= 0 với mọi y

     (z+3)2 >= 0 với mọi z

=>(x-y2+z)2+(y-2)2+(z+3)2 >= 0 với mọi x;y;z

Mà theo đề: (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2=(y-2)2=(z+3)2=0

+)(y-2)2=0=>y=2

+)(z+3)2=0=>z=-3

Thay y=2;z=-3 vào (x-y2+z)2=0=>x-22+(-3)2=0=>x=-5

Vậy (x;y;z)=(-5;2;-3)

a: Xét tứ giác OBDC có

\(\widehat{OBD}+\widehat{OCD}=180^0\)

Do đó: OBDC là tứ giác nội tiếp

b: Xét ΔEBA và ΔECB có

\(\widehat{E}\) chung

\(\widehat{EAB}=\widehat{EBC}\)

Do đó: ΔEBA\(\sim\)ΔECB

Suy ra: EB/EC=EA/EB

hay \(EB^2=EC\cdot EA\)

8 tháng 8 2016

 Ta có:  a +b +c = 0:

=> (a + b + c)2 = 0 
=> a² + b² + c² + 2(ab + bc + ca) = 0 
=> a² + b² + c² = -2(ab + bc + ca)    (1

Mặt khác:

a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²)    (cộng 2 vế cho 2(a²b² + b²c² + c²a²)

=> [-2(ab + bc + ca)]2 = 4(a²b² + b²c² + c²a²)  ( do (1) ) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> ĐPCM.ok

8 tháng 8 2016

xl, mik mới chứng minh đc bằng và cũng có sai sót trong bài làmhiu

KIỂM TRA HỌC KÌ II – Năm học: 2014 – 2015MÔN: TOÁN LỚP 6(Thời gian làm bài 90')Đề kiểm tra học kì 2 môn Toán lớp 6 Bài 4: (1,5 điểm) Một lớp có 40 học sinh gồm ba loại: giỏi, khá và trung bình. Số học sinh giỏi chiếm 1/5 số học sinh cả lớp. Số học sinh trung bình bằng 3/8 số học sinh còn lại.a) Tính số học sinh mỗi loại của lớp.b) Tính tỉ số phần trăm của số học sinh trung bình so...
Đọc tiếp

KIỂM TRA HỌC KÌ II – Năm học: 2014 – 2015

MÔN: TOÁN LỚP 6

(Thời gian làm bài 90')

Đề kiểm tra học kì 2 môn Toán lớp 6 

Bài 4: (1,5 điểm) Một lớp có 40 học sinh gồm ba loại: giỏi, khá và trung bình. Số học sinh giỏi chiếm 1/5 số học sinh cả lớp. Số học sinh trung bình bằng 3/8 số học sinh còn lại.

a) Tính số học sinh mỗi loại của lớp.

b) Tính tỉ số phần trăm của số học sinh trung bình so với số học sinh cả lớp.

Bài 5: (2 điểm) Cho góc bẹt xOy. Vẽ tia Oz sao cho góc yOz = 80o.

a) Tính góc xOz?

b) Vẽ Om, On lần lượt là tia phân giác của góc xOz và góc yOz. Hỏi hai góc và có phụ nhau không? Tại sao?

 


Bài 4: Để cứu trợ đồng bào bị lũ lụt, 1 tổ chức từ thiện đề ra mục tiêu là quyên góp được 8400kg gạo. Trong 3 tuần đầu, họ đã quyên được 1/2 số gạo. Sau đó quyên được 2/3 số gạo đó. Cuối cùng quyên được 1/4 số gạo đó. Hỏi họ có vượt mức đề ra không? Vượt bao nhiêu kg?

Bài 5: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vẽ hai tia Oy và Ot sao cho góc xOy = 400; góc xOt = 800

a) Tính góc yOt. Tia Oy có phải là tia phân giác của góc xOt không?

b) Gọi Om là tia đối của tia Ox. Tính góc mOt

c) Gọi tia Ob là tia phân giác của góc mOt. Tính góc bOy.

 

 

Bài 3: (1,5đ) Lớp 6A có 40 học sinh. Cuối năm, số học sinh xếp loại khá chiếm 45% tổng số học sinh cả lớp. Số học sinh khá bằng 5/6 học sinh trung bình, còn lại là học sinh giỏi. Tính số học sinh mỗi loại.

Bài 4: (3,5đ) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vẽ tia Ot, Oy sao cho :góc xOt = 500; góc xOy= 1000

a) Tia Ot có nằm giữa hai tia Ox và Oy không?

b) So sánh góc tOy và góc xOt

c) Tia Ot có là tia phân giác của góc xOy không? Vì sao?

GIÚP MÌNH VỚI CÁC BẠN ƠI, MÌNH TICK CHO NHÉ 

1
12 tháng 4 2016

I'm scare