Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D
Giả sử mặt phẳng (P) có vectơ pháp tuyến là n ⇀ = a ; b ; c a 2 + b 2 + c 2 ≠ 0 .
Khi đó phương trình mặt phẳng (P) có dạng a x + b y + c z + d = 0 .
Do M 0 ; 0 ; 1 ∈ P nên c + d = 0 ⇔ d = - c
Do N 0 ; 3 ; 1 ∈ P nên 3 b + c + d = 0 ⇔ b = 0
Khi đó P : a x + c z - c = 0
Từ giả thiết ta có d B ; P = 2 d A ; P
⇔ - 2 a + 2 c a 2 + c 2 = 2 a - c a 2 + c 2 (luôn đúng). Vậy có vô số mặt phẳng (P) thỏa mãn.
Đáp án D
Ta có: d B ; P ≤ A B , dấu “=” xảy ra ⇔ A B ⊥ P
Khi đó n P → = A B → 1 ; - 1 ; 1 ⇒ P : x - y + z - 1 = 0 ⇒ d O ; P = 1 3 .
Đáp án D
Kiến thức: Chóp tam giác có 3 cạnh bên đôi một vuông góc với nhau thì hình chiếu của đỉnh trên mặt đáy trùng với trực tâm của đáy.
Chóp O.ABC có các cạnh OA, OB, OC đôi một vuông góc với nhau, M(2;1;5) là trực tâm ΔABC .
⇒ O M ⊥ A B C ≡ P , vậy (P) nhận O M → = ( 2 ; 1 ; 5 ) làm một vectơ pháp tuyến. → Phương trình mặt phẳng (P) là:
2 x − 2 + y − 1 + 5 z − 5 = 0 ⇔ 2 x + y + 5 z − 30 = 0
Vậy d I ; P = 2 + 2 + 15 − 30 4 + 1 + 25 = 11 30 30