Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Sử dụng công thức viết phương trình mặt phẳng dạng đoạn chắn: Mặt phẳng (ABC) đi qua các điểm A(a;0;0), B(0;b;0), C(0;0;c) có phương trình
Cách giải: Phương trình mặt phẳng (ABC): x 2 + y 3 + z 4 = 1
Đáp án B
Phương pháp: - Trọng tâm G của tam giác ABC có tọa độ được tính:
- Phương trình mặt phẳng đi qua M x 0 ; y 0 ; z 0 và có 1 VTPT n → =(a;b;c)
Cách giải: Trọng tâm G của tam giác ABC: G(-1;1;1)
(P) vuông góc với AB => (P) nhận A B → = ( 2 ; 2 ; - 3 ) là một VTPT
Phương trình mặt phẳng (P):
Đáp án D
Áp dụng công thức phương trình mặt phẳng theo đoạn chắn ta được (ABC):
Phương trình mp theo đoạn chắn:
\(\dfrac{x}{1}+\dfrac{y}{3}+\dfrac{z}{5}=1\)
\(\Leftrightarrow15x+5y+3z-15=0\)
\(\overrightarrow{BA}=\left(3;-2;2\right)\) ; \(\overrightarrow{CA}=\left(2;-1;3\right)\)
\(\Rightarrow\left[\overrightarrow{CA};\overrightarrow{BA}\right]=\left(4;5;-1\right)\)
\(\Rightarrow\left(ABC\right)\) nhận \(\left(4;5;-1\right)\) là 1 vtpt
Phương trình mp (ABC):
\(4\left(x-0\right)+5\left(y-3\right)-1\left(z-0\right)=0\)
\(\Leftrightarrow4x+5y-z-15=0\)