K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 4 2019

Gọi tọa độ các giao điểm là \(A\left(a;0;0\right)\); \(B\left(0;b;0\right)\); \(C\left(0;0;c\right)\)

Không làm mất tính tổng quát, chỉ cần xét trường hợp \(a;b;c>0\)

Phương trình mặt phẳng (P) theo đoạn chắn: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

Ta có: \(S=OA+OB+OC=a+b+c\)

Do \(\left(P\right)\) qua M nên: \(\frac{4}{a}+\frac{1}{b}+\frac{9}{c}=1\)

Áp dụng BĐT Cauchy-Scwarz: \(\frac{2^2}{a}+\frac{1^2}{b}+\frac{3^2}{c}\ge\frac{\left(2+1+3\right)^2}{a+b+c}=\frac{36}{a+b+c}\)

\(\Rightarrow\frac{36}{a+b+c}\le1\Rightarrow a+b+c\ge36\)

\(\Rightarrow S_{min}=36\) khi \(\left\{{}\begin{matrix}a+b+c=36\\\frac{2}{a}=\frac{1}{b}=\frac{3}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12\\b=6\\c=18\end{matrix}\right.\)

Phương trình (P) khi đó có dạng: \(\frac{x}{12}+\frac{y}{6}+\frac{z}{18}=1\)

Hay chuyển dạng chính tắc: \(3x+6y+2z-36=0\)

Không thấy điểm I ở đâu để tính tiếp cả, nhưng đến đây thì mọi chuyện đơn giản, chỉ cần áp dụng công thức khoảng cách vào là xong.

16 tháng 12 2017

Đáp án C.

28 tháng 7 2019

Đáp án C

Phương pháp

+) Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a, b, c  ≠ 0) viết phương trình mặt phẳng (P) đi qua A, B, C dạng đoạn chắn.M ∈ (P)=>  Thay tọa độ điểm M vào phương trình mặt phẳng (P).

+) Ứng với mỗi trường hợp tìm các ẩn a, b, c tương ứng

Cách giải

Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a, b, c  0)  khi đó phương trình mặt phẳng đi qua A, B, C là  

TH1: a=b=c  thay vào (*) có 

TH2: a=b=-c  thay vào (*) có 

TH3: a=-b=c  thay vào (*) có 

TH4: a=-b=-c  thay vào (*) có 

Vậy có 4 mặt phẳng thỏa mãn.

8 tháng 9 2018

Chọn C

1 tháng 10 2019

28 tháng 2 2017

Đáp án B

Vì OA, OB, OC đôi một vuông góc và M là trực tâm  tam giác ABC => OM ⊥ (ABC)

Suy ra mp(ABC) nhận  O M →  làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)

Vậy phương trình  mp(P): 

<=> x +2y+3z -14=0  

3 tháng 5 2019

Đáp án D

Ta có: OA → OB, OC => OA → (OBC) => OA → BC

Mặt khác vì AM → BC (M là trực tâm tam giác ABC) nên ta suy ra BC → (OAM) => BC → OM

Chứng minh tương tự ta được AC → OM. Do đó OM → (ABC). Ta chọn: n p → =  OM →  = (1; -2; 3)

Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) - 2(y + 2) + 3(z - 3) = 0  x - 2y + 3z - 14 = 0

19 tháng 4 2018

Đáp án D

Ta có OA  OB, OC => OA  (OBC) => OA  BC.

Mặt khác ta có AM  BC nên ta suy ra BC  (OAM) => BC  OM

Chứng minh tương tự ta được AC  OM. Do đó OM  (ABC).

Ta chọn n P →   =   OM → = (1; 2; 2). Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) + 2(y - 2) + 2(z - 2) = 0 <=> x + 2y + 2z - 9 = 0

Chọn D

12 tháng 7 2018

Đáp án A

Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0. Phương trình của mặt phẳng (P) là:

 

 

Suy ra: a = b = c = 6. Vậy có một mặt phẳng (P) thỏa mãn bài toán.

1 tháng 2 2016

theo gt ,M(a;0;0),N(0;b;0),P(0;0;c),và A là trọng tâm nên kết hợp lại ta giải hệ phương trình là ok