Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thanh OM quay được \(3\dfrac{1}{10}\) vòng thì \(\alpha=3\dfrac{1}{10}\cdot360^o=1116^o\)
Từ M kẻ MH \(\perp\) Ox
\(\Rightarrow OH=15\cdot\left|cos1116^o\right|\approx12,1\)
Vậy độ dài bóng O'M' của OM khi thanh quay được \(3\dfrac{1}{10}\) là 12,1cm.
Độ dài bóng OM bằng 10 cm khi s = 10 hoặc s = -10.
Khi s = 10. Ta có: \(17cos5\pi t = 10 \Leftrightarrow cos5\pi t = \frac{{10}}{{17}}\)
Khi s = 10. Ta có: \(17cos5\pi t = - 10 \Leftrightarrow cos5\pi t = \frac{{ - 10}}{{17}}\)
Từ đó, ta có thể xác định được các thời điểm t bằng cách giải phương trình côsin.
a) Ta có:
\(\begin{array}{l}\tan \widehat {AOB} = \frac{{AH}}{{HO}} = \frac{{14}}{{15}}\\\tan \beta = \frac{{BH}}{{HO}} = \frac{{12}}{{15}} = \frac{4}{5}\end{array}\)
Ta có: \(\tan \alpha = \tan \left( {\widehat {AOB} - \beta } \right) = \frac{{\tan \widehat {AOB} - \tan \beta }}{{1 + \tan \widehat {AOB.}\tan \beta }} = \frac{{\frac{{14}}{{15}} - \frac{4}{5}}}{{1 + \frac{{14}}{{15}}.\frac{4}{5}}} = \frac{{10}}{{131}}\)
b) \(\tan \alpha = \frac{{10}}{{131}} \Rightarrow \alpha \approx {4^o}\)
a: M' thay đổi trên a'
b: Ảnh của a qua phép chiếu theo phương l trên mp(P) là đường thẳng a'
tham khảo:
a) Bóng của cây cột trên sân có thể được nhìn như là hình chiếu của cây cột qua phép chiếu song song với tia nắng mặt trời.
b) Khi tia sáng mặt trời vuông góc với mặt sân, bóng của cây cột sẽ không xuất hiện trên mặt sân vì không có tia sáng nào có thể chiếu trực tiếp lên bề mặt sân để tạo ra bóng của cây cột.
Đường thẳng vuông góc với mặt phẳng được hiểu là đường thẳng nằm thẳng đứng so với mặt phẳng.
Do mặt bàn và mặt đất không có điểm chung nên chúng song song với nhau.
Vì a//c, b//d (do cánh cửa là hình chữ nhật)
Mà c//d.
Suy ra, a//b.
Do đó, hai mép ngoài của chúng luôn song song với nhau.
Nếu hai cánh cửa sổ có dạng hình thang như Hình 4.30, hai cánh cửa để hai mép ngoài của chúng song song với nhau khi cả hai cánh cửa được khép lại.
Với \({x_0}\) bất kì, ta có:
\(f'\left( {{t_0}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{19,6t - 4,9{t^2} - 19,6{t_0} + 4,9t_0^2}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \frac{{ - 4,9\left( {{t^2} - t_0^2} \right) + 19,6\left( {t - {t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t - {t_0}} \right)\left( { - 4,9t - 4,9{t_0} + 19,6} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( { - 4,9t - 4,9{t_0} + 19,6} \right) = - 9,8{t_0} + 19,6\)
Vậy hàm số \(h = 19,6t - 4,9{t^2}\) có đạo hàm là hàm số \(h' = - 9,8{t_0} + 19,6\)
Độ cao của vật khi nó chạm đất thỏa mãn \(19,6t - 4,9{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 4\end{array} \right.\)
Khi t = 4, vận tốc của vật khi nó chạm đất là \( - 9,8.4 + 19,6 = - 19,6\) (m/s)
Vậy vận tốc của vật khi nó chạm đất là 19,6 m/s.
Khi một bàn thắng được ghi thì hình chiếu của quả bóng trên mặt đất theo phương thẳng đứng nằm phía trong vạch vôi cùng bờ với khung thành.