Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Gọi pt đường thẳng $BC$ là $y=ax+b$
Ta có: \(\left\{\begin{matrix} -4=a+b\\ -2=3a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=-5\end{matrix}\right.\)
Vậy pt tổng quát của đường thẳng $BC$ là:
\(y=x-5\Leftrightarrow x-y-5=0\)
b)
Đường thẳng $d:3x+y-5=0$ có vecto pháp tuyến là $(3,1)$ thì vecto chỉ phương là $(-1,3)$
Vì $\Delta$ song song với $(d)$ nên vecto chỉ phương của $\Delta$ cũng là $(-1,3)$
Mà $\Delta$ chứa $A$ nên phương trình tham số của $\Delta$ là:
\(\left\{\begin{matrix} x=-2-t\\ y=3+3t\end{matrix}\right.\)
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
a: vecto AB=(6;-4)
PTTS là:
x=-6+6t và y=3-4t
b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)
Phương trình(d) là:
3(x-3)+(-2)(y-2)=0
=>3x-9-2y+4=0
=>3x-2y-5=0
1: Gọi I(0,y) là tâm cần tìm
Theo đề, ta có: IA=IB
=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)
=>y^2-10y+25+9=y^2+14y+49+1
=>-10y+34=14y+50
=>-4y=16
=>y=-4
=>I(0;-4)
=>(x-0)^2+(y+4)^2=IA^2=90
2: Gọi (d1) là đường thẳng cần tìm
Vì (d1)//(d) nên (d1): 4x+3y+c=0
Theo đề, ta có: d(I;(d1))=3 căn 10
=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)
=>|c-12|=15căn 10
=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)