K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2021

Denta tạo với d1, d2 1 tam giác cân với đỉnh là giao điểm của d1, d2 khi và chỉ khi denta vuông góc phân giác tạo bởi d1, d2

Gọi \(A\left(x;y\right)\) là 1 điểm bất kì thuộc phân giác tạo bởi 2 đường thẳng d1, d2

\(\Rightarrow\dfrac{\left|x-7y+17\right|}{\sqrt{1^2+\left(-7\right)^2}}=\dfrac{\left|x+y-5\right|}{\sqrt{1^2+1^2}}\Leftrightarrow\left|x-7y+17\right|=\left|5x+5y-25\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+5y-25=x-7y+17\\5x+5y-25=-x+7y-17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3y+\dfrac{21}{2}=0\\3x-y-4=0\end{matrix}\right.\)

\(\Rightarrow\Delta\) nhận \(\left(3;-1\right)\) hoặc \(\left(1;3\right)\) là 1 vtpt

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}3\left(x-0\right)-1\left(y-1\right)=0\\1\left(x-0\right)+3\left(y-1\right)=0\end{matrix}\right.\)

NV
10 tháng 1 2022

Do A thuộc d1 nên tọa độ có dạng \(A\left(a;3a-3\right)\)

Do B thuộc d2 nên tọa độ có dạng: \(B\left(b;-b-2\right)\)

Áp dụng công thức trung điểm:

\(\Rightarrow\left\{{}\begin{matrix}a+0=2b\\3a-3+2=2\left(-b-2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-2b=0\\3a+2b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{4}\\b=-\dfrac{3}{8}\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}A\left(-\dfrac{3}{4};-\dfrac{21}{4}\right)\\B\left(-\dfrac{3}{8},-\dfrac{13}{8}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}=\left(\dfrac{3}{8};\dfrac{29}{8}\right)\)

Phương trình d có dạng:

\(29x-3\left(y-2\right)=0\Leftrightarrow29x-3y+6=0\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2023

Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$

Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$

$M$ là trung điểm của $AB$ nên:

\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)

\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)

Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$

Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$

Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$

$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:

$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$

19 tháng 3

tại sao lại ra 11/3 với 16/3 ạ

9 tháng 4 2021

(d1) : y= -x-1 ; (d2) : y=x/2 +1 

Gọi (d) : y =ax +b đi qua M(1;0)

=> 0 = a+b => b=-a => (d) : y=ax-a

Xét phương trình hoành độ giao điểm của (d1) và (d) ta có:

-x-1 = ax-a

<=> x(a+1) = a-1

<=> x= (a-1)/(a+1) ( a khác -1) 

=> \(A\left(\dfrac{a-1}{a+1};\dfrac{-2a}{a+1}\right)\)

\(\Rightarrow MA^2=\left(\dfrac{a-1}{a+1}-1\right)^2+\left(\dfrac{-2a}{a+1}\right)^2=\dfrac{4a^2+4}{a^2+2a+1}\left(1\right)\)

Xét phương trình hoành độ giao điểm chung giữa (d) và (d2) ta có:

x/2 + 1 =ax-a
<=> x+2 = 2ax-2a

<=> x(2a-1) = 2a+2 

<=> x= (2a+2) / (2a-1) ( a khác 1/2)

=> \(B\left(\dfrac{2a+2}{2a-1};\dfrac{3a}{2a-1}\right)\)

\(\Rightarrow MB^2=\left(\dfrac{2a+2}{2a-1}-1\right)^2+\left(\dfrac{3a}{2a-1}\right)^2=\dfrac{9a^2+9}{4a^2-4a+1}\left(2\right)\)

Đề MB = 3 MA 

\(\Leftrightarrow MB^2=9MA^2\Leftrightarrow\dfrac{9a^2+9}{4a^2-4a+1}=\dfrac{9\left(4a^2+4\right)}{a^2+2a+1}\\ \Leftrightarrow a^2+2a+1=4\left(4a^2-4a+1\right)\Leftrightarrow15a^2-18a+3=0\\ \Leftrightarrow5a^2-6a+1=0\Leftrightarrow\begin{matrix}a=1\\a=\dfrac{1}{5}\end{matrix}\left(t.m\right)\\ \Leftrightarrow\begin{matrix}\left(d\right):y=x-1\\\left(d\right):y=\dfrac{1}{5}x-\dfrac{1}{5}\end{matrix}\)