Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AC}=\left(5;-2\right)\)
Gọi \(\overrightarrow{u}=\left(a;b\right)\) là 1 vtcp của d (với a;b không đồng thời bằng 0)
Do d tạo với AC một góc 45 độ
\(\Rightarrow\dfrac{\left|5a-2b\right|}{\sqrt{5^2+2^2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)
\(\Rightarrow2\left(5a-2b\right)^2=29\left(a^2+b^2\right)\)
\(\Rightarrow21a^2-40ab-21b^2=0\)
\(\Rightarrow\left(3a-7b\right)\left(7a+3b\right)=0\)
Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(7;3\right)\\\left(a;b\right)=\left(3;-7\right)\end{matrix}\right.\)
\(\Rightarrow d\) nhận (3;-7) hoặc (7;3) là vtpt
\(\Rightarrow\) Phương trình d
a: A(1;2); B(2;1)
=>\(\overrightarrow{AB}=\left(1;-1\right)\)
=>VTPT là (1;1)
Phương trình đường thẳng AB là:
1(x-1)+2(y-1)=0
=>x-1+2y-2=0
=>x+2y-3=0
b:
M(1;3); Δ: 3x+4y+10=0
Khoảng cách từ M đến Δ là:
\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)
Bài 3:
H thuộc Δ nên H(x;4/5x+3/5)
\(\overrightarrow{AH}=\left(x+1;\dfrac{4}{5}x-\dfrac{12}{5}\right)\)
Δ: 4x-5y+3=0
=>VTPT là (4;-5)
=>VTCP là (5;4)
Theo đề, ta có: 5(x+1)+4(4/5x-12/5)=0
=>5x+5+16/5x-48/5=0
=>31/5x-23/5=0
=>x=23/31
=>y=4/5*23/31+3/5=37/31
a+9b=23/31+9*37/31=356/31
\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)
(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)
d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)
Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến
Suy ra \(\left(Q\right):x-2z+12=0\)
1: Gọi I(0,y) là tâm cần tìm
Theo đề, ta có: IA=IB
=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)
=>y^2-10y+25+9=y^2+14y+49+1
=>-10y+34=14y+50
=>-4y=16
=>y=-4
=>I(0;-4)
=>(x-0)^2+(y+4)^2=IA^2=90
2: Gọi (d1) là đường thẳng cần tìm
Vì (d1)//(d) nên (d1): 4x+3y+c=0
Theo đề, ta có: d(I;(d1))=3 căn 10
=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)
=>|c-12|=15căn 10
=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)
Gọi \(\left(a;b\right)\) là 1 vtpt của d
\(\overrightarrow{AC}=\left(5;-2\right)\Rightarrow\) đường thẳng AC nhận (2;5) là 1 vtpt
Do góc giữa d và AC bằng 45 độ
\(\Rightarrow cos45^0=\dfrac{1}{\sqrt{2}}=\dfrac{\left|2a+5b\right|}{\sqrt{2^2+5^2}.\sqrt{a^2+b^2}}\)
\(\Leftrightarrow29\left(a^2+b^2\right)=2\left(2a+5b\right)^2\)
\(\Leftrightarrow21a^2-40ab-21b^2=0\)
\(\Leftrightarrow\left(3a-7b\right)\left(7a+3b\right)=0\)
Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(7;3\right)\\\left(3;-7\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}7\left(x-3\right)+3\left(y-5\right)=0\\3\left(x-3\right)-7\left(y-5\right)=0\end{matrix}\right.\)