\(-\frac{5}{6}a^2b^3\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

Th1: 2 số cùng dương

=> \(-\frac{5}{6}a^2b^3\)dương mà a^2 dương và -5/6 âm => b^3 âm => b âm => a dương

=> \(\frac{2}{15}a^3b^5\)âm vì a^3 dương, b^5 âm và 2/15 dương

Th2 2 số cùng âm 

=> \(-\frac{5}{6}a^2b^3\) => b dương và a âm  => Vô lí ở số tiếp theo

7 tháng 9 2016

Do a,b bình đẳng  , coi b>0

A) a;b cùng dấu 

=> a dương => a>0

=>a/b<0/b=0

=> a/b là số hữu tỉ dương nếu a;b cùng dâu (1)

b) a và b khác dấu <=> a dương và b âm hoặc a âm và b dương  

Nếu a dương và b âm thì số hữu tỉ : a/b =m/-n âm (a=m;b=-n) 

Nếu a âm b dương thì số hữu tỉ a/b = -p/q âm ( a=-b ; b=q ) 

7 tháng 9 2016

Khi a,b cùng dấu:

\(\frac{a}{b}>0\)

Khi a, b khác dấu:

\(\frac{a}{b}< 0\)

23 tháng 8 2015

bn vào câu hỏi tương tự nhé!

23 tháng 8 2015

a) g/s (+) a và b cùng dấu dương 

=> a/b dương 

(+) a và b cùng dấu âm 

=> a/b ( dương ) 

11 tháng 6 2015

a) Nếu a;b cùng dấu => a; b cùng dương hoặc a;b cùng âm

+) a;b cùng dương => a/b dương

+) a;b cùng âm => a/b dương

Vậy a/b là số hữu tỉ dương

b) Nếu a;b trái dấu => a dương;b âm hoặc a âm và b dương

cả 2 trường hợp a/b đều < 0

=> a/b là số hữu tỉ âm

22 tháng 8 2016

a / Nếu a, b cùng dấu thì a/b sẽ có dạng  +a / +b ( là số hữu tỉ dương )

                                                      hoặc -a / -b  ( là số hữu tỉ dương )

=> Vậy bài toán được chứng minh

b/ Nếu a, b trái dầu thì a/b sẽ có dạng +a / -b ( là số hữu tỉ âm )

                                                hoặc -a / +b ( là số hữu tỉ âm )

=> Vậy bài toán được chứng minh

5 tháng 6 2019

Do \(\left|a\right|\ge0\Rightarrow b^5-b^4c\ge0\Rightarrow b^5\ge b^4c\Rightarrow b\ge c\)

Với \(b< 0\Rightarrow c< 0\left(KTM\right)\)

Với \(b=0\Rightarrow\left|a\right|=0\Rightarrow a=0\left(KTM\right)\)

Với \(b>0\Rightarrow a< 0\left(h\right)a=0\)

+) Với \(a=0\Rightarrow b-c=0\Rightarrow b=c>0\left(KTM\right)\)

+) Với \(a< 0\Rightarrow b>0;c=0\)

6 tháng 6 2019

zZz Cool Kid zZz bài bạn có ý đúng nhưng vẫn sai một số lỗi 

-) b ko thể bằng c

-) b=0 => |a|=0 là sai, vì b=0 nếu c âm thì -c vẫn dương => a > 0 vẫn tm 

-) ở dòng thứ 5, b=c cùng lớn hơn 0 nhưng vẫn còn th âm bạn chưa xét

Ta có:\(\left|a\right|=b^4.\left(b-c\right)\)

Vì |a| không âm => b4.(b-c) không âm => b-c không âm vì b4 không âm

Mà trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương nên b > c => a khác 0

Xét b = 0 vì b>c nên c < 0 => a > 0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương

Xét c = 0 vì b>c nên b>0 => a<0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương

Vậy ... (tự kết luận)