K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

Đáp án B.

18 tháng 12 2022

`n(\Omega)=C_10 ^2=45`

Gọi `A:"` Chọn được `2` chiếc được tạo thành `1` đôi`"`

  `=>n(A)=C_5 ^1=5`

`=>P(A)=5/45=1/9 ->\bb D`

VT
14 tháng 12 2022

\(n\left(\Omega\right)=C^4_{10}=210\)

A: "Không chọn được hai chiếc nào tạo thành một đôi".

\(\overline{A}\): "Chọn được ít nhất hai chiếc tạo thành một đôi".

\(n\left(\overline{A}\right)=C^1_5\cdot C_8^2=140\).

\(n\left(A\right)=210-140=70\).

\(P\left(A\right)=\dfrac{70}{210}=\dfrac{1}{3}\).

9 tháng 10 2018

26 tháng 7 2017

Chọn B

 Chiếc hộp chứa 6 quả cầu màu xanh và 4 quả cầu màu đỏ. Lấy ngẫu nhiên từ chiếc hộp ra 5 quả cầu nên số phần tử của không gian mẫu là 

Gọi A là biến cố: ”5 quả cầu lấy được có đúng 2 quả cầu màu đỏ”.

Lấy 2 quả cầu màu đỏ và 3 quả cầu màu xanh nên số phần tử của biến cố A là:

Xác suất cần tìm là:

 

NV
23 tháng 6 2021

Gọi số có 5 chữ số dạng \(\overline{abcde}\)

a có 9 cách chọn, b có 9 cách, c có 8 cách, d có 7 cách, e có 6 cách

\(\Rightarrow n\left(\Omega\right)=9.9.8.7.6=27216\)

- Nếu de cùng lẻ: chọn de từ 5 chữ số lẻ và xếp thứ tự: \(A_5^2=20\) cách

a có 7 cách chọn, b có 7, c có 6 cách \(\Rightarrow20.7.7.6=5880\) số

- Nếu de cùng chẵn:

+ de có chứa số 0: có \(1.4.2!.A_8^3=2688\) cách

+ de không chứa số 0: có \(A_4^2.7.7.6=3528\)

Tổng cộng: \(5880+2688+3528=12096\) số

Xác suất: \(P=\dfrac{12096}{27216}=\dfrac{4}{9}\)

29 tháng 3 2019

Đáp án B

21 tháng 8 2016

ta có : \(n\left(\Omega\right)=C^6_{20}=38760\)

a) Gọi A : " chọn ra 6 chiếc gang tay mà không tạo thành đôi nào "  

=> n(A) = \(\left(C^6_{10}+C^5_{10}.C^1_5+C^4_{10}.C^2_6+C^3_{10}.C^3_7+C^2_{10}.C^4_8+C^1_{10}.C^5_9+C^6_{10}\right)=13440\) 

=> P(A)= 13440 / 38760 = 112/323   


" Lưu ý : ta phải bân biệt gang tay trái và gang tay phải  ... tự đọc rồi tìm hiểu xem tại sao lại vậy .. ko hiểu thì hỏi lại t giải thích cho :) "

21 tháng 8 2016

b) Gọi B :" 6 chiếc lấy ra trong đó có 1 đôi " 

=> n(B) = \(C^1_{10}.C^4_9+C^1_{10}.C^3_9.C^1_6+C^1_{10}.C^2_9.C^2_7+C^1_{10}.C^1_9.C^3_8+C^1_{10}.C^4_9=20160\) 

=>P(A) = 20160 / 38760 =168/323