K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
25 tháng 8 2023

a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là 93%. 87% = 0,8091

b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là

7%. 13% = 0,0091

c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là

93%.13% + 7%.87% = 0,1818

d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là

0,8091 + 0,1818 = 0,9909

a: Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là:

\(0.93\cdot0.87=0.8091\)

b: Xác suất để cả hai người được chọn không đạt yêu cầu là:

(1-0,93)(1-0,87)=0,13*0,07=0,091

c: Xác suất để chỉ có 1 người đạt yêu cầu là:

0,93(1-0,87)+0,87(1-0,93)

=0,93*0,13+0,87*0,07

=0,1818

d: Để có ít nhất 1 trong 2 người đạt yêu cầu thì:

0,8091 + 0,1818 = 0,9909

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Gọi    A: “Học sinh thích môn Bóng đá”

B: “Học sinh thích môn Bóng bàn”

Do đó ta có \(P\left( A \right) = \frac{{19}}{{30}},P\left( B \right) = \frac{{17}}{{30}},P\left( {AB} \right) = \frac{{15}}{{30}}\)

Theo công thức cộng xác suất

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{19}}{{30}} + \frac{{17}}{{30}} - \frac{{15}}{{30}} = \frac{{21}}{{30}} = \frac{7}{{10}}\)

Vậy xác suất để chọn được học sinh thích ít nhất một trong hai môn Bóng đá hoặc Bóng bàn là \(\frac{7}{{10}}\)

20 tháng 11 2018

Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12

Ta có các trường hợp thuận lợi cho biến cố A là: 

                 ●   Trường hợp 1. Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có  cách.

                 ●   Trường hợp 2. Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có  cách.

                 ●   Trường hợp 3. Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có  cách.

Suy ra số phần tử của biến cố A là 

Vậy xác suất cần tính 

Chọn D.

21 tháng 10 2019

Chọn A

Lời giải. Gọi số học sinh nữ trong nhóm A là  x ( x ∈ ℕ * )

Gọi số học sinh nam trong nhóm B là  y ( y ∈ ℕ * )

Suy ra số học sinh nữ trong nhóm B là

25 - 9 - x - y = 16 - x - y

Khi đó, nhóm A có: 9 nam, x nữ và nhóm B có

y nam, 16 - x - y nữ

Xác suất để chọn được hai học sinh nam là

Mặt khác x + y < 16

Vậy xác suất để chọn đươc hai học sinh nữ là

C 1 1 . C 6 1 C 10 1 . C 15 1 = 0 , 04

2 tháng 1 2020

Đáp án B

Gọi số học sinh nữ trong nhóm A là x  ( x ∈ ℕ * )

Gọi số học sinh nam trong nhóm B là y  ( y ∈ ℕ * ) .

=> Số học sinh nữ trong nhóm B là 25 – 9 – x = 16 – x – y => x + y < 16

Khi đó, Nhóm A: 9 nam, x nữ và nhóm B: y nam, 16 – x – y nữ.

Xác suất để chọn được hai học sinh nam là

C 9 1 . C y 1 C 9 + x 1 . C 25 - 9 - x 1 = 0 , 54

⇔ 9 y ( 9 + x ) ( 16 - x ) = 27 50 .

⇒ y = 30 50 ( 9 + x ) ( 16 - x ) ⇒ x < 16 .

Vì  y ∈ ℕ * ⇒ 3 50 ( 9 + x ) ( 16 - x ) ∈ N * .

=> (x, y) = {(1; 9), (6; 9), (11; 6)}.

Mặt khác x + y < 16

( Khi chia nhóm thì A,B có vai trò như nhau nên có 2 cặp thỏa mãn )

Vậy xác suất để chọn đươc hai học sinh nữ là 0,04.

QT
Quoc Tran Anh Le
Giáo viên
25 tháng 8 2023

Cặp biến cố E và F không xung khắc vì nếu học sinh được chọn thích môn Bóng đá thì cả E và F có thể xảy ra vì có 2 bạn thích cả hai môn Bóng đá và Cầu lông.

Vì có 2 bạn cùng thích bóng đá và cầu lông

nên hai biến cố E và F không xung khắc

12 tháng 2 2018

Kí hiệu A 1 ,   A 2 ,   A 3  lần lượt là các biến cố: Học sinh được chọn từ khối I trượt Toán, Lí, Hoá: B 1 ,   B 2 ,   B 3  lần lượt là các biến cố : Học sinh được chọn từ khối II trượt Toán, Lí, Hoá. Rõ ràng với mọi (i,j), các biến cố A i  và B i  độc lập.

a) Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Xác suất cần tính là

 

P ( ( A 1   ∪   A 2   ∪   A 2 )   ∩   ( B 1   ∪   B 2   ∪   B 3 ) )     =   P ( A 1   ∪   A 2   ∪   A 2 ) . P ( B 1   ∪   B 2   ∪   B 3 )   =   1 / 2 .   1 / 2   =   1 / 4

 

c) Đặt A   =   A 1   ∪   A 2   ∪   A 3 ,   B   =   B 1   ∪   B 2   ∪   B 3

Giải sách bài tập Toán 11 | Giải sbt Toán 11

d) Cần tính P(A ∪ B)

Ta có

P(A ∪ B) = P(A) + P(B) − P(AB)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

11 tháng 4 2019

Đáp án D

Gọi A là biến cố “Học sinh được chọn đạt điểm tổng kết loại giỏi môn Hóa học”.

B là biến cố “Học sinh được chọn đạt điểm tổng kết loại giỏi môn Vật lí”.

⇒ A C = a 3       A ∪ B  là biến cố “Học sinh được chọn đạt điểm tổng kết môn Hóa học hoặc Vật lí loại giỏi”.

A ∩ B  là biến cố “Học sinh được chọn đạt điểm tổng kết loại giỏi cả hai môn Hóa học và Vật lí”.

10 tháng 4 2017

Trong mỗi khối, XS hs trượt Toán là 0,25; trượt Lý là 0,15; trượt cả 2 môn là 0,1; trượt đúng 1 môn là 0,2; chỉ trượt Toán là 0,15; chỉ trượt Lý là 0,05; trượt ít nhất 1 môn là 0,3; ko trượt môn nào là 0,7
a) P = 0,25^2 = 0,0625
b) Câu này đề chưa rõ ràng, có nhiều cách hiểu
..1) 2 hs đó đều bị trượt ít nhất 1 môn
..2) 2 hs đó cùng bị trượt trong 1 môn nào đó (còn môn kia không trượt)
..3) 2 hs đó cùng bị trượt trong 1 môn nào đó (còn môn kia có thể trượt hoặc không)
..Nếu hiểu theo cách 1 thì P = 0,3^2 = 0,09
..Nếu hiểu theo cách 2 thì P = 0,15^2 + 0,05^2 = 0,025
..Nếu hiểu theo cách 3 thì P = 0,25^2 + 0,15^2 - 0,1^2 = 0,075

c) P = 0,7^2 = 0,49

d) Trường hợp này là biến cố đối lập với biến cố c
..P = 1 - 0,7^2 = 0,51

22 tháng 8 2020

bạn chép mạng nhe