K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: ΔABC vuông tại A nội tiếp (O)

=>O là trung điểm của BC

BC=căn 6^2+8^2=10cm

=>OB=OC=10/2=5cm

S=5^2*3,14=78,5cm2

Vẽ tam giác thường ABC nội tiếp đường tròn tâm O bán kính r
Ta có diện tích tam giác đều nội tiếp đường tròn (O;r) có S =r23√34r2334
Gọi I là trung điểm cung BC có chứa A
Dựng OI vuông góc BC tại H và cắt (O;r) tại K
Ta có Diện tích tam giác ABC < diện tích tam giác BIC
S BCI = IH.HB 
S2BIC=HB2.IH2SBIC2=HB2.IH2
Lại có: BH2=HK.HIBH2=HK.HI (Hệ thức lượng)
Do đóS2BIC=KH.IH3=(2r−IH)IH3=IH33(6r−3IH)SBIC2=KH.IH3=(2r−IH)IH3=IH33(6r−3IH)
Áp dụng BĐT AM-GM ta có
HI+HI+HI+(6r−3HI)≥44√HI3.(6r−3IH)⇔32r≥44√HI3.(6r−3IH)HI+HI+HI+(6r−3HI)≥4HI3.(6r−3IH)4⇔32r≥4HI3.(6r−3IH)4
⇒8116r4≥IH3(6r−3IH)⇔2716r2≥IH3.(2r−IH)⇒3√34R2≥√IH3(2r−IH)=SBIC⇒8116r4≥IH3(6r−3IH)⇔2716r2≥IH3.(2r−IH)⇒334R2≥IH3(2r−IH)=SBIC
Do đóSABCSABC
Dấu "=" xảy ra khi HI = 6r -3IH
Do đó HI =32r32r

Vẽ tam giác thường ABC nội tiếp đường tròn tâm O bán kính r
Ta có diện tích tam giác đều nội tiếp đường tròn (O;r) có S =r23√34r2334
Gọi I là trung điểm cung BC có chứa A
Dựng OI vuông góc BC tại H và cắt (O;r) tại K
Ta có Diện tích tam giác ABC < diện tích tam giác BIC
S BCI = IH.HB 
S2BIC=HB2.IH2SBIC2=HB2.IH2
Lại có: BH2=HK.HIBH2=HK.HI (Hệ thức lượng)
Do đóS2BIC=KH.IH3=(2r−IH)IH3=IH33(6r−3IH)SBIC2=KH.IH3=(2r−IH)IH3=IH33(6r−3IH)
Áp dụng BĐT AM-GM ta có
HI+HI+HI+(6r−3HI)≥44√HI3.(6r−3IH)⇔32r≥44√HI3.(6r−3IH)HI+HI+HI+(6r−3HI)≥4HI3.(6r−3IH)4⇔32r≥4HI3.(6r−3IH)4
⇒8116r4≥IH3(6r−3IH)⇔2716r2≥IH3.(2r−IH)⇒3√34R2≥√IH3(2r−IH)=SBIC⇒8116r4≥IH3(6r−3IH)⇔2716r2≥IH3.(2r−IH)⇒334R2≥IH3(2r−IH)=SBIC
Do đóSABCSABC
Dấu "=" xảy ra khi HI = 6r -3IH
Do đó HI =32r32r

Vẽ tam giác thường ABC nội tiếp đường tròn tâm O bán kính r
Ta có diện tích tam giác đều nội tiếp đường tròn (O;r) có S =r23√34r2334
Gọi I là trung điểm cung BC có chứa A
Dựng OI vuông góc BC tại H và cắt (O;r) tại K
Ta có Diện tích tam giác ABC < diện tích tam giác BIC
S BCI = IH.HB 
S2BIC=HB2.IH2SBIC2=HB2.IH2
Lại có: BH2=HK.HIBH2=HK.HI (Hệ thức lượng)
Do đóS2BIC=KH.IH3=(2r−IH)IH3=IH33(6r−3IH)SBIC2=KH.IH3=(2r−IH)IH3=IH33(6r−3IH)
Áp dụng BĐT AM-GM ta có
HI+HI+HI+(6r−3HI)≥44√HI3.(6r−3IH)⇔32r≥44√HI3.(6r−3IH)HI+HI+HI+(6r−3HI)≥4HI3.(6r−3IH)4⇔32r≥4HI3.(6r−3IH)4
⇒8116r4≥IH3(6r−3IH)⇔2716r2≥IH3.(2r−IH)⇒3√34R2≥√IH3(2r−IH)=SBIC⇒8116r4≥IH3(6r−3IH)⇔2716r2≥IH3.(2r−IH)⇒334R2≥IH3(2r−IH)=SBIC
Do đóSABCSABC
Dấu "=" xảy ra khi HI = 6r -3IH
Do đó HI =32r32r

14 tháng 9 2018

chưa đọc mà đã thấy hoa  mắt rồi bn ơi

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.a. tứ giác ACOD là hình jb. tam giác BCD là tam giác jc. tính chu vi và diện tích tam giác BCD3. tam giác ABC nhọn nội tiếp...
Đọc tiếp

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với

0
27 tháng 3 2022

\(\widehat{BAC}=60^o\Rightarrow\widehat{BOC}=120^o\). Diện tích cần tìm là \(\pi\).32-1/2.3.3.sin120o=9\(\pi\)-9\(\sqrt{3}\)/4 (cm2)\(\approx\)24,38 (cm2).

Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot\widehat{BOC}\)

=>\(\widehat{BOC}=75^0:\dfrac{1}{2}=150^0\)

 

Diện tích tam giác OBC là:

\(S_{OBC}=\dfrac{1}{2}\cdot OB\cdot OC\cdot sinBOC\)

\(=\dfrac{1}{2}\cdot1\cdot1\cdot sin150=\dfrac{1}{4}\)

28 tháng 1 2016

vào hoc24h nhé

28 tháng 1 2016

diện tích =395 nha bạn

giúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.a. tứ giác ACOD là hình jb. tam giác BCD là tam giác jc. tính chu vi và diện tích tam giác BCD3. tam giác ABC nhọn nội...
Đọc tiếp

giúp với

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABC

0
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0