Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
i3 = i2 .i = -i; i4 = i2 .i2 = (-1)(-1) = 1; i5 = i4 .i = i
Nếu n = 4q + r, 0 ≤ r < 4 thì
1) in = ir = i nếu r = 1
2) in = ir = -1 nếu r = 2
3) in = ir = -i nếu r = 3
4) in = ir = 1 nếu r = 4
11.
Thay tọa độ M vào pt d ta được:
\(\frac{1}{1}=\frac{3}{3}=\frac{m}{-2}\Rightarrow m=-2.1=-2\)
12.
\(AA'\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của A'B lên (ABC)
\(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABC)
\(\Rightarrow\widehat{A'BA}=60^0\)
\(AB=\frac{AC}{\sqrt{2}}=2a\Rightarrow AA'=AB.tan60^0=2a\sqrt{3}\)
8.
\(I=2\int\limits^9_0f\left(x\right)dx+3\int\limits^9_0g\left(x\right)dx=2.37+3.???=...\)
Đề thiếu, bạn tự điền số và tính
9.
\(z=\frac{1}{3-4i}=\frac{3+4i}{\left(3-4i\right)\left(3+4i\right)}=\frac{3}{25}+\frac{4}{25}i\)
\(\Rightarrow\overline{z}=\frac{3}{25}-\frac{4}{25}i\)
10.
\(\overline{z_1}=1-5i\) \(\Rightarrow\overline{z_1}+iz_2=1-5i+i\left(3-2i\right)=3-2i\)
Điểm biểu diễn là \(Q\left(3;-2\right)\)
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
\(\int\left(\frac{1}{x}-2x\right)dx=ln\left|x\right|-x^2+C\)
\(\int cos2xdx=\frac{1}{2}sin2x+C\)
\(\int\frac{1}{x^2-4x+4}dx=\int\frac{d\left(x-2\right)}{\left(x-2\right)^2}=-\frac{1}{\left(x-2\right)}+C=\frac{1}{2-x}+C\)
\(\int\limits^4_1\frac{1}{2\sqrt{x}}dx=\sqrt{x}|^4_1=\sqrt{4}-\sqrt{1}=1\)
\(I=\int\limits^1_0\left(2x+1\right)e^xdx\)
Đặt \(\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=\left(2x+1\right)e^x|^1_0-\int\limits^1_02e^xdx=3e-1-2e^x|^1_0=e+3\)
Lời giải:
Ta có \(y=\frac{mx+4}{x+m}\Rightarrow y'=\frac{m^2-4}{(x+m)^2}\)
Để hàm luôn nghịch biến trong khoảng xác định thì
\(y'\leq 0\Leftrightarrow m^2-4\leq 0\Leftrightarrow -2\leq m\leq 2\) (1)
Mặt khác, ta phải có \(m+x\neq 0\forall x\in (-\infty; 1)\Leftrightarrow -m\neq x\)
\(\Leftrightarrow -m\neq (-\infty; 1)\Leftrightarrow -m\in [1;+\infty)\)
\(\Leftrightarrow m\in (-\infty;-1]\) (2)
Từ \((1);(2)\Rightarrow -2\leq m\leq -1\)
Đáp án B
Mình tưởng hàm bậc 1 trên bậc 1 ko xảy ra dấu bằng chứ ạ?
a/ \(y'=4x^3-2mx=2x\left(2x^2-m\right)\)
Do \(a=1>0\Rightarrow\)nếu \(m>0\Rightarrow\) hàm số có 1 khoảng đồng biến là \(\left(\sqrt{\frac{m}{2}};+\infty\right)\)
\(\Rightarrow\sqrt{\frac{m}{2}}\le2\Rightarrow0< m\le8\)
Vậy \(m\le8\) \(\Rightarrow\) có 8 giá trị nguyên dương
Bài 2:
\(1\le\sqrt{a^2+b^2}\le2\Rightarrow1\le a^2+b^2\le4\)
\(\Rightarrow\) Tập hợp \(z\) là hình vành khuyên giới hạn bởi 2 đường tròn có tâm là gốc tọa độ và bán kính lần lượt là 1 và 2
\(\Rightarrow S=\pi.2^2-\pi.1^2=3\pi\)
Bài 3: Không thấy câu hỏi đâu hết, chỉ thấy gọi số phức z mà ko thấy yêu cầu làm gì với nó cả :(
Bài 4:
Do \(A\in d_1:\left\{{}\begin{matrix}x=2+t\\y=3+t\\z=3-2t\end{matrix}\right.\) \(\Rightarrow A\left(a+2;a+3;3-2a\right)\)
\(\Rightarrow\overrightarrow{CA}=\left(a-1;a+1;-2a\right)\)
Do \(d_2\perp AC\Rightarrow\overrightarrow{CA}.\overrightarrow{u_{d2}}=0\)
\(\Rightarrow1\left(a-1\right)-2\left(a+1\right)+1\left(-2a\right)=0\)
\(\Rightarrow-3a=3\Rightarrow a=-1\)
\(\Rightarrow x_A=a+2=1\)
Đáp án D