Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2\le x\le100\)
Mà x chia hết cho 2 => \(x\in\left\{2;4;6;...;98;100\right\}\)
Số phần tử x là: \(\frac{\left(100-2\right)}{2}+1=50\)
b) Ta có: \(x+1=0\)
\(\Rightarrow x=-1\) , x = -1 không là số tự nhiên
=> Tập hợp rỗng
c) Theo nguyên lý Dirichlet cứ 3 số liên tiếp luôn tồn tại 1 số chia hết cho 3
Mà có vô số STN => Có vô số các số tự nhiên chia hết cho 3
=> Tập hợp vô số nghiệm
a)10^n-36n-1=10^n-1-36n
=100...0-1-36n
=99..99-36n
Mà 10^n-36n-1 chia hết cho 27=>10^n-36n-1 chia hết cho 9
Do :99..99 chia hết cho 9
36n=9.4.n chia hết cho 9
=>10^n-36n-1 chia hết cho 27
Vậy 10^n-36n-1 chia hết cho 27(đpcm)
b)1111...111 chia hết cho 27
=>111..111 chia hết chia hết cho 9
Do 11..1 có tổng các chữ số là 27 nên=>11..11 chia hết cho 9=>11..111 chia hết cho 27
Vậy 11.11 chia hết cho 27(đpcm)
A = {10;11;12;......;24}
B = {1;2;3;4;5;6}
C = {10;12;14;....;98}
A = { 10;11;12;13;14;15;16;17;18;19;20;21;22;23;24}
B = {1;2;3;4;5;6}
C={ 10;12;14;16;18;20;22;24;26;28;30;32;34;36;38;40;42;44;46;48;50;52;54;56;58;60;62;64;66;68;70;72;74;76;78;80;82;84;86;88;90;92;94;96;
98}
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }