Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khẳng định nào sau đây là sai?
A Số 0 và số 1 không phải là số nguyên tố cũng không phải là hợp số.
B. Cho số tự nhiên a1, a có 2 ước thì a là hợp số.
C. Số 2 là số nguyên tố chẵn duy nhất.
D. Số nguyên tố là số tự nhiên lớn hơn 1 mà chỉ có hai ước 1 và chính nó
Câu 2. Chọn câu trả lời sai:
A. Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
B. Hợp số là số tự nhiên lớn hơn 1, có nhiều hơn hai ước.
C. Số nguyên tố nhỏ nhất là số 2.
D. Số nguyên tố nhỏ nhất là số 1.
a)Sai => Vì số 1 và 0 không phải là số nguyên tố cũng không phải là hợp số.
b)Sai => Vì có 2 là số nguyên tố chẵn duy nhất
c)Đúng
d)Đúng
a) Sai vì có 0 hoặc 1 vừa không là nguyên tố cũng không là hợp số
b) Sai vì 2 cũng là số nguyên tố nhưng 2 là số chẵn
c) Đúng
d) Sai vì số 1 không có ước nguyên tố
Các khẳng định: 1. Ước nguyên tố của 30 là 5 và 6. - Khẳng định này là sai, vì ước của 30 là 1, 2, 3, 5, 6, 10, 15, 30. 2. Tích của hai số nguyên tố bất kì luôn là số lẻ. - Khẳng định này là sai, ví dụ: 2 và 3 là hai số nguyên tố nhưng tích của chúng là số chẵn. 3. Mọi số nguyên tố đều là số lẻ. - Khẳng định này là sai, vì số nguyên tố duy nhất là số 2 là số chẵn. 4. Mọi số chẵn đều là hợp số. - Khẳng định này là đúng, vì một số chẵn bao gồm ít nhất hai thừa số riêng biệt (2 và số chẵn đó) nên nó là hợp số. 5. Ước nguyên tố nhỏ nhất của số chẵn là 2. - Khẳng định này là đúng, vì một số chẵn luôn có ước nguyên tố chung là số 2.
Khẳng định 1 sai vì 30 = 2.3.5 nên có ước nguyên tố là 2; 3; 5
Khẳng định 2 sai vì 2 và 3 là số nguyên tố nhưng 2.3=6 là số chẵn
Khẳng định 3 sai vì 2 là số nguyên tố nhưng 2 là số chẵn
Khẳng định 4 sai vì 2 là số chẵn nhưng 2 là số nguyên tố
Gọi d là UCLN(2n+1;14n+5)
->(14n+5)-(2n+1)chia hết cho d
->(14n+5)-7(2n+1) chia hết cho d
->14n+5-14n-1 chia hết cho d
->n+5-n-1
4 chia hết cho d
d thuộc {1;-1;2;-2;4;-4}
Sau đó thì bạn dùng phương pháp thử chọn nha.
câu 11:A
câu 12:A
câu 13: hình như sai đáp án, phải là 3 mũ chứ ko phải là 32 ở đáp án b đó
câu 14: C
mình tạm thời chỉ trả lời vậy thui, mình đang học
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
A
A