Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta rút gọn các phân số về dạng tối giản:
Do vậy ta có:
Phân số không bằng phân số nào trong các phân số còn lại.
Ta rút gọn các phân số về dạng tối giản:
Do vậy ta có:
Phân số không bằng phân số nào trong các phân số còn lại.
\(\frac{1}{5}=\frac{1.3}{5.3}=\frac{3}{15}\)
\(\frac{-10}{55}=\frac{-10\div5}{55\div5}=\frac{-2}{11}\)
Vậy ba cặp số phân số bằng nhau sau khi sử dụng tính chất cơ bản
2 .
\(\frac{-12}{-3}=\frac{-12:3}{-3:3}=\frac{-4}{-1};\frac{7}{-35}=\frac{7:7}{-35:7}=\frac{1}{-5};\frac{-9}{27}=\frac{-9:9}{27:9}=\frac{-1}{3}\)
3 .
\(15min=\frac{1}{4}\)giờ
\(90min=\frac{3}{2}\)giờ
A) \(\frac{1}{2}\cdot\left(\frac{2}{9}+\frac{3}{7}-\frac{5}{27}\right)\)
\(=\frac{1}{2}\cdot\frac{1}{2}\)
\(=\frac{1}{4}\)
B) \(\left(\frac{-5}{28}+1.75+\frac{8}{35}\right):\left(-3\frac{9}{20}\right)\)
\(=\left(\frac{-5}{28}+\frac{7}{4}+\frac{8}{35}\right):\frac{-69}{20}\)
\(=\frac{14}{5}:\frac{-69}{20}\)
\(=\frac{-56}{69}\)
a) Ta có: BCNN(16, 24) = 48
48 : 16 = 3; 48 : 24 = 2. Do đó:
\(\frac{3}{{16}} = \frac{{3.3}}{{16.3}} = \frac{9}{{48}}\)
\(\frac{5}{{24}} = \frac{{5.2}}{{24.2}} = \frac{{10}}{{48}}\).
b) Ta có: BCNN(20, 30, 15) = 60
60 : 20 = 3; 60 : 30 = 2; 60 : 15 = 4. Do đó:
\(\frac{3}{{20}} = \frac{{3.3}}{{20.3}} = \frac{9}{{60}}\)
\(\frac{{11}}{{30}} = \frac{{11.2}}{{30.2}} = \frac{{22}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\).
1/ ĐÁP ÁN:
\(\frac{-9}{33}=\frac{3}{-11}\); \(\frac{15}{9}=\frac{5}{3}\); \(\frac{-12}{19}=\frac{60}{-95}\)
2/ ĐÁP ÁN:
\(\frac{-7}{20}=\frac{3}{-18}=\frac{-9}{54}\ne\frac{12}{18}=\frac{-10}{-15}\ne\frac{14}{20}\)
3/ ĐÁP ÁN:
\(\frac{2}{3}=\frac{40}{60}\); \(\frac{3}{4}=\frac{45}{60}\); \(\frac{4}{5}=\frac{48}{60}\); \(\frac{5}{6}=\frac{50}{60}\)
a) \(\frac{4}{9}\)và \(\frac{7}{15}\)
Ta có: \(9 = 3^2 ; 15 = 3.5\) nên \(BCNN (9,15) = 3^2. 5 = 45\). Do đó ta có thể chọn mẫu chung là 45.
\(\frac{4}{9}=\frac{4.5}{9.5}=\frac{20}{45}\)
\(\frac{7}{15}=\frac{7.3}{15.3}=\frac{21}{45}\)
b) \(\frac{5}{12}; \frac{7}{15}\) và \(\frac{4}{27}\)
Ta có: \(12=2^2.3\); \(15 = 3.5\) ; \(27=3^3\) nên BCNN(12, 15, 27) =\(2^2.3^3.5=540\). Do đó ta có thể chọn mẫu chung là 540.
\(\frac{5}{12}=\frac{5.45}{12.45}=\frac{225}{540}\)
\(\frac{7}{15}=\frac{7.36}{15.36}=\frac{252}{540}\)
\(\frac{4}{27}=\frac{4.20}{27.20}=\frac{80}{540}\)
Ta có:\(\frac{-15}{20}=\frac{-3.5}{4.5}=\frac{-3}{4}=\frac{3}{-4}\); \(\frac{24}{-32}=\frac{3.8}{-4.8}=\frac{3}{-4}\); \(\frac{-27}{36}=\frac{-3.9}{4.9}=\frac{-3}{4}=\frac{3}{-4}\)
Vậy có 3 phân số biểu diễn số hữu tỉ \(\frac{3}{-4}\)là \(\frac{-15}{20}\); \(\frac{24}{-32}\)và \(\frac{-27}{36}\).