Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4: \(tan\left(\dfrac{5}{2}\Omega\right)\) không có giá trị vì \(\dfrac{5}{2}\Omega=\dfrac{\Omega}{2}+2\cdot\Omega\)
1B
2:
Chu kì là \(T=2\Omega\)
3:
Chu kì là \(T=2\Omega\)
5: \(sinx=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{6}+k2\Omega\\x=\dfrac{5}{6}\Omega+k2\Omega\end{matrix}\right.\)
TH1: \(x=\dfrac{\Omega}{6}+k2\Omega\)
\(x\in\left[0;2\Omega\right]\)
=>\(\dfrac{\Omega}{6}+k2\Omega\in\left[0;2\Omega\right]\)
=>\(2k+\dfrac{1}{6}\in\left[0;2\right]\)
=>\(2k\in\left[-\dfrac{1}{6};\dfrac{11}{6}\right]\)
=>\(k\in\left[-\dfrac{1}{12};\dfrac{11}{12}\right]\)
mà \(k\in Z\)
nên \(k\in\left\{0\right\}\)
TH2: \(x=\dfrac{5}{6}\Omega+k2\Omega\)
\(x\in\left[0;2\Omega\right]\)
=>\(\dfrac{5}{6}\Omega+k2\Omega\in\left[0;2\Omega\right]\)
=>\(k2\Omega\in\left[-\dfrac{5}{6}\Omega;\dfrac{7}{6}\Omega\right]\)
=>\(2k\in\left[-\dfrac{5}{6};\dfrac{7}{6}\right]\)
=>\(k\in\left[-\dfrac{5}{12};\dfrac{7}{12}\right]\)
mà k nguyên
nên k=0
Vậy: \(x\in\left\{\dfrac{\Omega}{6};\dfrac{5\Omega}{6}\right\}\)
a) Sai
Sửa lại: "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥ a và Δ ⊥ b"
b) Đúng
c) Đúng
d) Sai
Sửa lại: Đường thẳng đi qua M trên a và vuông góc với a, đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b.
e) Sai.
a) Đúng
b) Đúng
c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)
d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.
e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.
A. Mệnh đề đảo sai (2 đường cùng mặt chưa chắc song song)
B. Sai, ví dụ 2 đường thẳng song song
C. Đúng
D. Sai, 2 đường thẳng song song (ko có quy định nào bắt 1 đường thẳng chỉ nằm trên 1 mặt)