K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Đáp án B

+ Xét hàm y = f(x) = cos (x + π)          

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-x + π) = -cos x = cos (x + π) = f(x)

Do đó y = cos (x + π) là hàm số chẵn .

+ Xét hàm y = g(x) = tan2016x

TXĐ: D = R\{π/2 + kπ, k  Z}

Với mọi x ∈ D, ta có: -x ∈ D và g(-x) = tan2016(-x) = (-tan x)2016 = tan2016x = g(x)  

Do đó: y tan2016là hàm chẵn trên tập xác định của nó.

+Xét hàm y = cot2x

f(-x) = cot(-2x) = - cot 2x = -f(x) nên đây là hàm số lẻ.

+ Xét hàm số  y = 1-sinx

f(-x) = 1- sin(-x) = 1+ sin x

Nên hàm số không chẵn không lẻ

28 tháng 5 2018

28 tháng 8 2018

+ Xét hàm  y = f x = cos x + π

TXĐ:  D= R

Với mọi x ∈ D , ta có: − x ∈ D  và

f − x = cos − x + π = − cos x = cos x + π = f x

Do đó y = cos x + π là hàm số chẵn trên R.

+ Xét hàm  y = g x = tan 2016 x

TXĐ:  D = ℝ \ π 2 + k π , k ∈ ℤ

Với mọi x ∈ D , ta có: − x ∈ D  và

g − x = tan 2016 − x = − tan x 2016 = tan 2016 x = g x  

Do đó: y = tan 2016 x là hàm chẵn trên tập xác định của nó

Chọn đáp án B.

9 tháng 3 2019

Do đó: y= 100 tan100x  là hàm chẵn trên tập xác định của nó.

Đáp án B

22 tháng 2 2018

Đáp án C.

+ Xét hàm y = f(x) = cos 3x

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-3x) = cos 3x = f(x)

Do đó, y = f(x) = cos 3x  là hàm chẵn trên tập xác định của nó.

+ Xét hàm y = g(x) =  sin (x2 + 1)

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D  và g(-x) = sin ((-x)2 + 1) = sin (x2 + 1) = g(x)

Do đó: y = g(x) = sin (x2 + 1) là hàm chẵn trên R.

+ Xét hàm y = h(x) = tan2 x

TXĐ: D = R\{π/2 + k2π, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D  và h(-x) = tan2 (-x) = tan2 x = h(x)

Do đó: y = h(x) = tan2 x  là hàm số chẵn trên D

+ Xét hàm y = t(x) = cot x.

TXĐ: D = R\{kπ, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D và t(-x) = cot (-x) = -cot x = -t(x)

Do đó: y = t(x) = cot x là hàm số lẻ trên D.

16 tháng 11 2018

+ Xét hàm số  y= f(x) = cos3x

TXĐ: D =R

Với mọi x ∈ D , ta có: - x ∈ D  và

   f( -x) = cos( - 3x) = cos3x = f(x)

Do đó, y= cos 3x là hàm chẵn trên tập xác định của nó.

+ Xét hàm y= g(x)= sin(x2 + 1)

TXĐ: D= R

Với mọi x ∈ D , ta có: - x ∈ D  và

 g( -x)= sin[ (-x)2 +1]= sin( x2+1)= g(x)

    Do đó: y= sin( x2 +1)  là hàm chẵn trên R.

    + Xét hàm số y= h( x)= tan2x .

    TXĐ: 

Với mọi x ∈ D , ta có: - x ∈ D  và

    h( -x)= tan2 (-x)= (- tanx)2 = tan2 x=  h(x)

Do đó y= tan2x là hàm số chẵn trên D.

+ Xét hàm số y= t(x)= cotx.

    TXĐ:  

Với mọi x ∈ D , ta có: - x ∈ D  và t(-x)= cot(-x) = - cotx = - t(x)

Do đó:  y= cotx là hàm số lẻ trên D.

Vậy (1); (2); (3) là các hàm số chẵn

Đáp án C

17 tháng 8 2023

tham khảo:

a)\(y'=xsin2x+sin^2x\)

\(y'=sin^2x+xsin2x\)

b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)

c)\(y=sin3x-3sinx\)

\(y'=3cos3x-3cosx\)

d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)

\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Đặt \(u = 3{\rm{x}}\) thì \(y = \sin u\). Ta có: \(u{'_x} = {\left( {3{\rm{x}}} \right)^\prime } = 3\) và \(y{'_u} = {\left( {\sin u} \right)^\prime } = \cos u\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = \cos u.3 = 3\cos 3{\rm{x}}\).

Vậy \(y' = 3\cos 3{\rm{x}}\).

b) Đặt \(u = \cos 2{\rm{x}}\) thì \(y = {u^3}\). Ta có: \(u{'_x} = {\left( {\cos 2{\rm{x}}} \right)^\prime } =  - 2\sin 2{\rm{x}}\) và \(y{'_u} = {\left( {{u^3}} \right)^\prime } = 3{u^2}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = 3{u^2}.\left( { - 2\sin 2{\rm{x}}} \right) = 3{\left( {\cos 2{\rm{x}}} \right)^2}.\left( { - 2\sin 2{\rm{x}}} \right) =  - 6\sin 2{\rm{x}}{\cos ^2}2{\rm{x}}\).

Vậy \(y' =  - 6\sin 2{\rm{x}}{\cos ^2}2{\rm{x}}\).

c) Đặt \(u = \tan {\rm{x}}\) thì \(y = {u^2}\). Ta có: \(u{'_x} = {\left( {\tan {\rm{x}}} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\) và \(y{'_u} = {\left( {{u^2}} \right)^\prime } = 2u\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = 2u.\frac{1}{{{{\cos }^2}x}} = 2\tan x\left( {{{\tan }^2}x + 1} \right)\).

Vậy \(y' = 2\tan x\left( {{{\tan }^2}x + 1} \right)\).

d) Đặt \(u = 4 - {x^2}\) thì \(y = \cot u\). Ta có: \(u{'_x} = {\left( {4 - {x^2}} \right)^\prime } =  - 2{\rm{x}}\) và \(y{'_u} = {\left( {\cot u} \right)^\prime } =  - \frac{1}{{{{\sin }^2}u}}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} =  - \frac{1}{{{{\sin }^2}u}}.\left( { - 2{\rm{x}}} \right) = \frac{{2{\rm{x}}}}{{{{\sin }^2}\left( {4 - {x^2}} \right)}}\).

Vậy \(y' = \frac{{2{\rm{x}}}}{{{{\sin }^2}\left( {4 - {x^2}} \right)}}\).