Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT: \(\left(t+2\right)^2\) = \(\left(0+2\right)^2\) = 4
VP: 3t + 4 = 3.0 + 4 = 4
VT = VP nên t = 0 là nghiệm của phương trình
@. Với t = 1, ta có:
VT: \(\left(t+2\right)^2\) = \(\left(1+2\right)^2\) = 9
VP: 3t + 4 = 3.1 + 4 = 7
VT ≠≠ VP nên t = 1 không phải là nghiệm của phương trình.
Lần lượt thay các giá trị của t vào hai vế của phương trình ta được:
- Với t = -1
Vế trái = (-1 + 2)2 = 1
Vế phải = 3(-1) + 4 = 1
Vế trái = Vế phải nên t = -1 là nghiệm.
- Với t = 0
Vế trái = (0 + 2)2 = 4
Vế phải = 3.0 + 4 = 4
Vế trái = Vế phải nên t = 0 là nghiệm.
- Với t = 1
Vế trái = (1 + 2)2 = 9
Vế phải = 3.1 + 4 = 7
Vế trái ≠ Vế phải nên t = 1 không là nghiệm của phương trình.
A = 3t^2 -t+ 6t -2 - 3t^2 - 3t -2t + 7
= (3t^2 -3t^2) +( 6t-t-3t-2t) +(7-2)
= 0+0+5 =5
Vậy A ko phụ thuộc vào giá trị của biến.
Những bài kiểu này bạn cứ nhân ra mà nếu kết quả ra 1 số thực thi ko phụ thuộc vào biến.
Chúc bạn học tốt.
Thay t = 3 vào phương trình, ta được:
\(1-a-3=2a\left(a+2\right)\)
\(\Leftrightarrow-2-a=2a^2+4a\)
\(\Leftrightarrow2a^2+5a+2=0\)
Ta có \(\Delta=5^2-4.2.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{-5+3}{4}=\frac{-1}{2}\\a=\frac{-5-3}{4}=-2\end{cases}}\)
Sử dụng delta thôi!
Xét \(4x^2+\sqrt{2}x-\sqrt{2}=0\) có \(4\cdot\left(-\sqrt{2}\right)=-4\sqrt{2}< 0\) nên PT có 2 nghiệm phân biệt
Mà a là nghiệm nguyên dương của PT nên ta có: \(4a^2+\sqrt{2}a-\sqrt{2}=0\)
Vì a > 0 \(\Rightarrow4a^2=-\sqrt{2}a+\sqrt{2}\)
\(\Rightarrow a^2=\frac{\sqrt{2}-\sqrt{2}a}{4}=\frac{\left(1-a\right)\sqrt{2}}{4}=\frac{1-a}{2\sqrt{2}}\)
\(\Rightarrow a^4=\left(\frac{1-a}{2\sqrt{2}}\right)^2=\frac{1-2a+a^2}{8}\)
Thay vào ta được:
\(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{\left(\sqrt{a^4+a+1}\right)^2-a^4}\)
\(=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a^4+a+1-a^4}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a+1}=\sqrt{a^4+a+1}+a^2\)
\(=\sqrt{\frac{1-2a+a^2}{8}+a+1}+\frac{1-a}{2\sqrt{2}}=\sqrt{\frac{a^2+6a+9}{8}}+\frac{1-a}{2\sqrt{2}}\)
\(=\frac{a+3}{2\sqrt{2}}+\frac{1-a}{2\sqrt{2}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Vậy \(B=\sqrt{2}\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
Suy ra x+2004=0
\(\Leftrightarrow x=-2004\)
Lần lượt thay các giá trị của t vào hai vế của phương trình ta được:
- Tại t = -1 :
(t + 2)2 = (-1 + 2)2 = 1
3t + 4 = 3(-1) + 4 = 1
⇒ t = -1 là nghiệm của phương trình (t + 2)2 = 3t + 4.
- Tại t = 0
(t + 2)2 = (0 + 2)2 = 4
3t + 4 = 3.0 + 4 = 4
⇒ t = 0 là nghiệm của phương trình (t + 2)2 = 3t + 4.
- Tại t = 1
(t + 2)2 = (1 + 2)2 = 9
3t + 4 = 3.1 + 4 = 7
⇒ t = 1 không là nghiệm của phương trình (t + 2)2 = 3t + 4.