Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hàm số có đồ thị là một hình parabol, bề lõm quay xuống dưới.
Hình ảnh hình học có tính đối xứng.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn D.
Theo công thức tính độ dài cung ta có độ dài cung có số đo 3,85 rad là
l = R.α = 8,43.3,85 = 32,4555 cm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lí cosin trong tam giác ABC ta có:
\(B{C^2} = A{C^2} + A{B^2} - 2AC.AB.\cos A\)
\(\begin{array}{l} \Leftrightarrow B{C^2} = 7,{5^2} + 3,{5^2} - 2.7,5.3,5.\cos {135^o}\\ \Leftrightarrow B{C^2} \approx 105,6\\ \Leftrightarrow BC \approx 10,3\end{array}\)
Áp dụng định lí sin trong tam giác ABC ta có: \(\frac{{BC}}{{\sin A}} = 2R\)
\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{{10,3}}{{2.\sin {{135}^o}}} \approx 7,3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi phương trình chuyển động của quả bóng có dạng \(y=at^2+bt+c\)
\(t=0;y=1\Rightarrow c=1\)
\(t=1;y=7\Rightarrow a+b+1=7\Rightarrow a+b=6\)
\(t=2;y=9\Rightarrow4a+2b+1=9\Rightarrow2a+b=4\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\end{matrix}\right.\)
\(\Rightarrow y=-2t^2+8t+1\)
Các thời điểm mà độ cao quả bóng đạt 7m là:
\(-2t^2+8t+1=7\Rightarrow2t^2-8t+6=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)
Vậy quả bóng đạt độ cao lớn hơn 7m trong khoảng thời gian 2s (từ giây thứ 1 đến giây thứ 3)
Một quả bóng chuyền được phát lên từ độ cao 1 m và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 7 m sau 1 giây và đạt độ cao 9 m sau 2 giây. Trong khoảng thời gian bao lâu thì độ cao quả bóng nhỏ hơn 7 m.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo:
Giả sử chiếc đu quay quay theo chiều kim đồng hồ.
Gọi M là vị trí của cabin, M’ là vị trí của cabin sau 20 phút và các điểm A A’, B, H như hình dưới.
Vì đi cả vòng quay mất 30 phút nên sau 20 phút, cabin sẽ đi quãng đường bằng \(\frac{2}{3}\) chu vi đường tròn.
Sau 15 phút cabin đi chuyển từ điểm M đến điểm B, đi được \(\frac{1}{2}\) chu vi đường tròn.
Trong 5 phút tiếp theo cabin đi chuyển từ điểm B đến điểm M’ tương ứng \(\frac{1}{6}\) chu vi đường tròn hay \(\frac{1}{3}\) cung .
Do đó: \(\widehat {BOM'} = \frac{1}{3}{.180^o} = {60^o}\)\( \Rightarrow \widehat {AOM'} = {90^o} - {60^o} = {30^o}.\)
\( \Rightarrow M'H = \sin {30^o}.OM' = \frac{1}{2}.75 = 37,5\left( m \right).\)
\( \Rightarrow \) Độ cao của người đó là: 37,5 + 90 = 127,5 (m).
Vậy sau 20 phút quay người đó ở độ cao 127,5 m.
- Cách 1:
Hàm số biểu diễn đồ thị \(y = - 0,00188{\left( {x - 251,5} \right)^2} + 118\)
\(\begin{array}{l}{\left( {x - 251,5} \right)^2} \ge 0\\ \Leftrightarrow - 0,00188{\left( {x - 251,5} \right)^2} \le 0\\ \Leftrightarrow - 0,00188{\left( {x - 251,5} \right)^2} + 118 \le 118\end{array}\)
Khi đó độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney đạt giá trị lớn nhất là \(y = 118\left( m \right)\)
- Cách 2:
Ta có phương trình thành cầu: \(y = – 0,00188(x – 251,5)^2 + 118\)
\( \Leftrightarrow y = – 0,00188x^2 + 0,94564x – 0,91423\), là hàm số bậc hai.
Vì a = – 0,00188 < 0 nên đồ thị hàm số trên có bề lõm hướng xuống dưới hay đỉnh I của đồ thị là điểm cao nhất, vậy giá trị lớn nhất cần tìm chính là tung độ của đỉnh I.
Ta có: \(b = 0,94564, c = – 0,91423\)
\( x_I = \frac{-b}{2a}= \frac{-0,94564}{2. (-0,00188)}=251,5 \Rightarrow y_I = – 0,00188(x_I – 251,5)^2 + 118 =118.\)
Vậy độ cao lớn nhất cần tìm là 118 m.