K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 10 2020

Chia các số từ 1 đến 100 thành 3 nhóm:

\(A=\left\{1;4;7;...;100\right\}\) gồm 34 số chia 3 dư 1

\(B=\left\{3;6;9;...;99\right\}\) gồm 33 số chia hết cho 3

\(C=\left\{2;5;...;98\right\}\) gồm 33 số chia 3 dư 2

3 viên bi có tổng chia hết cho 3 khi chúng thỏa mãn: 3 viên cùng 1 nhóm hoặc 3 viên nằm ở 3 nhóm khác nhau

Vậy có: \(C_{34}^3+C_{33}^3+C_{33}^3+C_{34}^1.C_{33}^1.C_{33}^1=...\) số cách thỏa mãn

16 tháng 6 2018

Không gian mẫu là số cách chọn ngẫu nhiên 3 viên bi từ hộp chứa 50 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố “3 viên bi được chọn là một số chia hết cho 3 ’’.

Trong 50 viên bi được chia thành ba loại gồm: 16 viên bi có số chia hết cho 3; 17 viên bi có số chia cho 3 dư 1 và 17 viên bi còn lại có số chia cho 3 dư 2.

Để tìm số kết quả thuận lợi cho biến cố A, ta xét các trường hợp

●   Trường hợp 1. 3 viên bi được chọn cùng một loại, có  cách.

●   Trường hợp 2. 3 viên bi được chọn có mỗi viên mỗi loại, có  cách.

Suy ra số phần tử của biến cố A là .

Vậy xác suất cần tính 

Chọn B.

NV
23 tháng 10 2020

Chia các số gồm 2 nhóm:

\(A=\left\{1;3;5;...;99\right\}\) gồm 50 số lẻ

\(B=\left\{2;4;6;...;100\right\}\) gồm 50 số chẵn

Chọn 3 viên thỏa mãn có tổng là chẵn khi: (3 viên cùng ở nhóm B); (2 viên nhóm A và 1 viên nhóm B)

Vậy số cách thỏa mãn là:

\(C_{50}^3+C_{50}^2.C_{50}^1=...\)

5 tháng 11 2021

Có \(C_{24}^3\) cách chọn 3 viên bất kì.

Có \(C_8^3+C_6^3+C_{10}^3\) cách họn 3 viên bi cùng màu.

Có 6 cách chọn 3 viên bi cùng số.

\(\Rightarrow\) Có \(C_{24}^3-\left(C_8^3+C_6^3+C_{10}^3\right)-6=1822\) cách chọn 3 viên bi khác màu, khác số.

NV
5 tháng 11 2021

Chọn 1 viên xanh: có 6 cách

Chọn 1 viên đỏ khác số viên xanh: 7 cách

Chọn 1 viên vàng khác số viên xanh và đỏ: 8 cách

Tổng cộng: \(6.7.8=336\) cách

26 tháng 6 2017

Chọn A

Gọi x là số lần viên bi đỏ được chọn.

Gọi y là số lần viên bi xanh được chọn.

TH1. 1 ≤ x6.

Có 6 cách chọn viên đỏ.

Có 5 cách chọn viên xanh.

=> Có 5.6 = 30 cách.

TH2. x = 7.

Có 6 cách chọn viên xanh.

=> Có 6 cách.

Vậy có 36 cách chọn. 

29 tháng 10 2021

Có \(C^1_{15}=15\) cách chọn một viên bi.

20 tháng 1 2019

Chọn C 

20 viên bi khác nhau được đánh số từ 1 đến 20, chia làm ba phần:

Phần 1 gồm các viên bi mang số chia hết cho 3, có 6viên.

Phần 2 gồm các viên bi mang số chia cho 3 dư 1, có 7 viên.

Phần 3 gồm các viên bi mang số chia cho 3 dư 2, có 7 viên.

Lấy ba viên bi từ hộp trên rồi cộng số ghi trên đó lại, được một số chia hết cho 3 có các trường hợp sau:

Trường hợp 1: lấy được 3 viên bi ở phần 1, có  C 6 3  cách.

Trường hợp 2: lấy được 3 viên bi ở phần 2, có  C 7 3  cách.

Trường hợp 3: lấy được 3 viên bi ở phần 3, có  C 7 3  cách.

Trường hợp 4: lấy được 1 viên bi ở phần 1, 1 viên bi ở phần 2 và 1 viên bi ở phần 3, có  C 6 1 . C 7 1 . C 7 1  cách.

Vậy có  cách lấy được ba viên bi thỏa mãn yêu cầu bài toán.

4 tháng 3 2017

Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4=16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

●   Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4=12cách.

●   Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3=9 cách.

Suy ra số phần tử của biến cố A là 16+12+9=37.

Vậy xác suất cần tính .

Chọn B.

NV
23 tháng 1 2024

Không gian mẫu: \(C_{27}^3\)

Chọn 1 quả cầu xanh: có 8 cách

Chọn quả cầu đỏ khác số so với quả xanh: 8 cách

Chọn quả vàng khác số so với 2 quả đã chọn trước đó: 8 cách

\(\Rightarrow8.8.8\) cách chọn thỏa mãn

Xác suất: \(P=\dfrac{8.8.8}{C_{27}^3}=...\)