K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

Tam giác ACD đồng dạng với tam giác CMD 

=> \(\frac{AC}{CM}=\frac{CD}{MD}=\frac{AD}{CD}\Rightarrow\left(\frac{AC}{CM}\right)^2=\frac{CD}{MD}\cdot\frac{AD}{CD}=\frac{AD}{DM}\)

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
giúp mk giải mấy bài này vớiI/ Cho nửa đường tròn đường kính ab trên cùng 1 nửa mặt phẳng vẽ 2 tiếp tuyến Ax By trên nửa đường tròn lấy điểm M vẽ tiếp tuyến tại M cắt Ax tại C và cắt By tại D.Nối AM và OC cắt nhau tại K, MB và OD cắt nhau tại I.C/m: a/MKOI là hình chữ nhậtb/KI vuông góc vs AC c/t/giác OAC đồng dạng vs t/giác DBOII/ Cho 2 đường tròn(O) và (O') cắt nhau tại A và B.Gọi I là...
Đọc tiếp

giúp mk giải mấy bài này với

I/ Cho nửa đường tròn đường kính ab trên cùng 1 nửa mặt phẳng vẽ 2 tiếp tuyến Ax By trên nửa đường tròn lấy điểm M vẽ tiếp tuyến tại M cắt Ax tại C và cắt By tại D.Nối AM và OC cắt nhau tại K, MB và OD cắt nhau tại I.
C/m: 
a/MKOI là hình chữ nhật
b/KI vuông góc vs AC 
c/t/giác OAC đồng dạng vs t/giác DBO

II/ Cho 2 đường tròn(O) và (O') cắt nhau tại A và B.Gọi I là trung điểm của (O) và (O') qua A vẽ đường thẳng vuông góc với IA,cắt các đường tròn (O) và (O') tại C và D (khác A) . C/m:AC=AD

III/ Cho 2 đường tròn (O1) và (O2) tiếp xúc ngoài tại M. Qua M vẽ đường thẳng thứ 2 cắt (O1) ở A2, cắt (O2) ở B2.
C/m:
a/t/giác O1A1M đồng dạng vs t/giác O2B1M
b/t/giác MA1A2 đồng dạng vs t/giác MB1B2
c/A1A2 song2 vs B1B2

0