Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tọa độ A là:
y=0 và -2x+2=0
=>x=1 và y=0
=>A(1;0)
Tọa độ B là:
x=0 và y=-2x+2
=>x=0 và y=-2*0+2=2
=>B(0;2)
b: C thuộc Ox nên C(x;0)
D thuộc Oy nên D(0;y)
ABCD là hình thoi nên AB=AD và vecto AB=vecto DC
A(1;0); B(0;2); C(x;0); D(0;y)
\(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{DC}=\left(x;-y\right)\)
\(AB=\sqrt{\left(0-1\right)^2+\left(2-0\right)^2}=\sqrt{5}\)
\(AD=\sqrt{\left(0-1\right)^2+\left(y-0\right)^2}=\sqrt{y^2+1}\)
vecto AB=vecto DC
=>x=-1 và -y=2
=>x=-1 và y=-2
AB=AD
=>y^2+1=5
=>y^2=4
=>y=2(loại) hoặc y=-2(nhận)
Vậy: x=-1 và y=-2
=>C(-1;0); D(0;-2)
Gọi phương trình (d2) có dạng là y=ax+b
(d2) đi qua C và D nên ta có hệ phương trình:
a*(-1)+b=0 và 0*a+b=-2
=>b=-2 và -a=-b=2
=>a=-2 và b=-2
=>y=-2x-2
c: (d1): y=-2x+2 và (d2): y=-2x-2
Phần b mk chưa học nên chịu :v
a, Phương trình đường thẳng (d) là: y = ax + b
Vì đường thẳng (d) song song với đường thẳng y = 3x + 1 nên
\(\Rightarrow\) \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)
Với a = 3 ta được pt đường thẳng (d): y = 3x + b
Vì đường thẳng (d) đi qua điểm A(3;7) nên thay x = 3; y = 7 ta được:
7 = 3.3 + b
\(\Leftrightarrow\) b = -2 (TM)
Vậy phương trình đường thẳng (d) là: y = 3x - 2
Chúc bn học tốt!
PTHHĐGĐ là:
x^2-2x-m^2+2m=0
Δ=(-2)^2-4(-m^2+2m)
=4+4m^2+8m=(2m+2)^2
Để phương trình có hai nghiệm phân biệt thì 2m+2<>0
=>m<>-1
x1^2+2x2=3m
=>x1^2+x2(x1+x2)=3m
=>x1^2+x2^2+x1x2=3m
=>(x1+x2)^2-x1x2=3m
=>2^2-(-m^2+2m)=3m
=>4+m^2-2m-3m=0
=>m^2-5m+4=0
=>m=1 hoặc m=4
Vì (d) cắt trục Ox tại C nên ta có:
\(\hept{\begin{cases}\left(k-1\right)x+2=0\\y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{2}{k-1}\\y=0\end{cases}}\)
\(\Rightarrow C\left(\frac{2}{k-1};0\right)\)
Ta có:
\(OA=\sqrt{0^2+2^2}=2\)
\(OB=\sqrt{\left(-1\right)^2+0^2}=1\)
\(OC=\sqrt{\left(\frac{2}{k-1}\right)^2+0^2}=\sqrt{\frac{4}{k^2-2k+1}}\)
Vì điện tích của \(S_{\Delta OAC}=2S_{\Delta OAB}\)
\(\Leftrightarrow\frac{1}{2}.OA.OC=2.\frac{1}{2}.OA.OB\)
\(\Leftrightarrow OC=2OB\)
\(\Leftrightarrow\sqrt{\frac{4}{k^2-2k+1}}=2.1\)
\(\Leftrightarrow\sqrt{k^2-2k+1}=1\)
\(\Leftrightarrow k^2-2k+1=1\)
\(\Leftrightarrow\orbr{\begin{cases}k=0\\k=2\end{cases}}\)
HD.OAB và OAC cùng đường cao OA
theo đề cần OC=2.OB=2
C co tọa độ là (0,+-2)
Từ đó => k; ồ mà mọi K y luôn đi qua C(0,2)--> đáp số mọi k
--> xem lại đề kiểu quái gì thế