K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2019

Hình 68

Xét tam giác ABC và tam giác ABD có:

    AB = AB (cạnh chung)

    AC = AD (gt)

    BC = BD (gt)

Vậy ΔABC = ΔABD (c.c.c)

Hình 69

Xét tam giác MNQ và tam giác QPM có:

    MN = QP (gt)

    NQ = PM (gt)

    MQ cạnh chung

Vậy ΔMNQ = ΔQPM (c.c.c)

Hình 70

Xét tam giác EHI và tam giác IKE có:

    EH = IK (gt)

    HI = KE (gt)

    EI = IE (cạnh chung)

Vậy ΔEHI = ΔIKE (c.c.c)

Xét tam giác EHK và tam giác IKH có:

    EH = IK (gt)

    EK = IH (gt)

    HK = KH (cạnh chung)

Vậy ΔEHK = ΔIKH (c.c.c)

21 tháng 11 2017

nh 98): Xét ΔABC và ΔABD có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABC = ΔABD (g.c.g)

- Hình 99): Ta có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Xét ΔABD và ΔACE có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABD = ΔACE ( g.c.g)

Xét ΔADC và ΔAEB có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

    DC = EB (Vì DC = DB + BC ; EB = EC + BC mà DB = EC)

Nên ΔADC = ΔAEB (g.c.g)

21 tháng 11 2017

Xem hình 98)

∆ABC và ∆ABD có: 

ˆA1A1^=ˆA2A2^(gt)

AB là cạnh chung.

ˆB1B1^=ˆB2B2^(gt)

Nên ∆ABC=∆ABD(g.c.g)

Xem hình 99)

Ta có:

ˆB1B1^+ˆB2B2^=180(Hai góc kề bù).

ˆC1C1^+ ˆC2C2^=180(Hai góc kề bù)

Mà ˆB2B2^=ˆC2C2^(gt)

Nên ˆB1B1^=ˆC1C1^

* ∆ABD và ∆ACE có:

ˆB1B1^=ˆC1C1^(cmt)

BD=EC(gt)

ˆDD^ = ˆEE^(gt)

Nên ∆ABD=∆ACE(g.c.g)

* ∆ADC và ∆AEB có:

ˆDD^=ˆEE^(gt)

ˆC2C2^=ˆB2B2^(gt)

DC=EB

Nên ∆ADC=∆AEB(g.c.g)

21 tháng 9 2017

Bà vẽ hình kiểu gì vậy

21 tháng 9 2017

Hình 63

Ta có:

Giải bài 10 trang 111 Toán 7 Tập 1 | Giải bài tập Toán 7

Và AB = MI; AC = IN; BC = MN

Nên ΔABC = ΔIMN

 Hình 64 :

ΔPQR có:

Giải bài 10 trang 111 Toán 7 Tập 1 | Giải bài tập Toán 7

Và QH = RP, HR = PQ, QR ( cạnh chung ) 

Nên ΔHQR = ΔPRQ 

6 tháng 10 2020

Vì a // b nên hai tam giác CAB và CDE có:

Giải bài 37 trang 95 Toán 7 Tập 1 | Giải bài tập Toán 7

 
20 tháng 4 2017

Hình 68.

Xét \(\Delta ABC;\Delta ABD\):

AC = AD (gt)

AB chung

BC = BD (gt)

=> \(\Delta ABC=\Delta ABD\left(c.c.c\right)\)

Hình 69.

Xét \(\Delta MNQ;\Delta QPM:\)

MN = QP (gt)

MQ chung

NQ = PM (gt)

=> \(\Delta MNQ=\Delta QPM\left(c.c.c\right)\)

Hình 70. Gọi giao điểm của HK và EI là O.

Xét tg HEI; tg KIE:

EH = KI

EI chung

HI = KE

=> tg HEI = tg KIE (c.c.c)

=> g HEI = g KIE hay g HEO = g OIK

Tương tự: tg HIK = tg KEH (c.c.c)

=> g IHK = g EKH hay g IHO = g OKE

Xét tg HEO; tg KIO:

g HEO = g OIK (c/m trên)

HE = KI

g EHO = g OKI (cộng góc)

=> tg HEO = tg KIO (g.c.g)

Tương tự: tg HIO = tg KEO (g.c.g)

20 tháng 4 2017

Giải bài 17 trang 114 Toán 7 Tập 1 | Giải bài tập Toán 7

Giải bài 17 trang 114 Toán 7 Tập 1 | Giải bài tập Toán 7

5 tháng 7 2017

Lời giải:

a) √36 = 6

b) -√16 = -4

Giải bài 83 trang 41 Toán 7 Tập 1 | Giải bài tập Toán 7

26 tháng 2 2021
A)6;B)-4;C)3/5;D)3;E)3
24 tháng 12 2016

hay thật

 

24 tháng 12 2016

Merry Christmas, too!

18 tháng 4 2019

Giải bài 32 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC.

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC (như hình vẽ)

(H ∈ tia AB, I ∈ BC, K ∈ tia AC)

Theo định lí 1: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài )

MI = MK ( Vì M thuộc phân giác của góc C ngoài )

Suy ra: MH = MK (cùng bằng MI)

Dựa vào định lí 2: Điểm nằm bên trong góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.

⇒ M thuộc phân giác của góc BAC (đpcm).