K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4 2020

Gọi G là trọng tâm tam giác \(\Rightarrow\) tọa độ G là nghiệm

\(\left\{{}\begin{matrix}x-2y+4=0\\2x+y-6=0\end{matrix}\right.\) \(\Rightarrow G\left(\frac{8}{5};\frac{14}{5}\right)\)

Gọi P là trung điểm BC, theo tính chất trọng tâm: \(\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AP}\Rightarrow P\left(\frac{7}{5};\frac{37}{10}\right)\)

Gọi \(M\left(a;-2a+6\right)\) \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_A=2a-2\\y_B=2y_M-y_A=-4a+11\end{matrix}\right.\)

P là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_P-x_B=\frac{24}{5}-2a\\y_C=2y_P-y_B=4a-\frac{18}{5}\end{matrix}\right.\)

N là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_N=\frac{x_A+x_C}{2}=\frac{17}{5}-a\\y_N=\frac{y_A+y_C}{2}=2a-\frac{13}{10}\end{matrix}\right.\)

Do N thuộc BN nên:

\(\frac{17}{5}-a-2\left(2a-\frac{13}{10}\right)+4=0\) \(\Rightarrow a=2\)

\(\Rightarrow\left\{{}\begin{matrix}B\left(2;3\right)\\C\left(\frac{4}{5};\frac{22}{5}\right)\end{matrix}\right.\)

16 tháng 12 2020

Đủ đề chưa v.

16 tháng 12 2020

Đủ đấy bạn, đề hsg toán

15 tháng 7 2016

 Nối BM cắt AC tại N,ta chứng minh được BM vuông góc AC và BM=AC .tìm được N,tỷ lệ AN/AC=1/5.NM/BM=3/5 => 3AN=MN.tìm đc A,có các tỷ lệ lúc nãy tìm đc B,C.

Mình tính được : A(3;-3).B(1;-3).C(1;1)

NV
7 tháng 2 2022

Do A là giao điểm AB, AC nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x+y-12=0\\x+4y-6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=0\end{matrix}\right.\) \(\Rightarrow A\left(6;0\right)\)

Do B thuộc AB nên tọa độ có dạng: \(B\left(b;-2b+12\right)\)

Do C thuộc AC nên tọa độ có dạng: \(C\left(-4c+6;c\right)\)

Do M là trung điểm cạnh BC nên theo công thức trung điểm:

\(\left\{{}\begin{matrix}b-4c+6=2.0\\-2b+12+c=2.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b-4c=-6\\-2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}B\left(2;8\right)\\C\left(-2;2\right)\end{matrix}\right.\)