Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Hệ số góc của đường thẳng: \(a=\dfrac{y_B-y_A}{x_B-x_A}=\dfrac{4-2}{3-1}=2\)
b. Gọi hàm số có dạng \(y=ax+b\Rightarrow a=1\)
\(\Rightarrow y=x+b\)
Do đồ thị hàm số qua A nên:
\(1+b=2\Rightarrow b=1\)
Vậy hàm số có dạng: \(y=x+1\)
Đường thẳng đi qua hai điểm A và B có dạng: y = ax + b
Thay a = 1 vào (1) ta có: b = 2 – 1 = 1
Vậy phương trình đường thẳng AB là y = x + 1
Đường thẳng đi qua hai điểm A và B có dạng: y = ax + b
Đường thẳng đi qua hai điểm A và B nên tọa độ A và B nghiệm đúng phương trình.
Ta có: Tại A: 2 = a + b ⇔ b = 2 – a (1)
Tại B: 4 = 3a + b (2)
Thay (1) và (2) ta có: 4 = 3a + 2 – a ⇔ 2a = 2 ⇔ a = 1
Vậy hệ số a của đường thẳng đi qua A và B là 1.
- Thay tọa độ điểm B và C vào hàm số ta được :
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{16}{5}\end{matrix}\right.\)
Vậy ...
b, Thay a, b vào ta được hàm số : \(y=-\dfrac{4}{5}x+\dfrac{16}{5}\)
\(\Rightarrow\tan\left(180-a\right)=\dfrac{4}{5}\)
\(\Rightarrow a=141^o21\)
Vậy ...