Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a)
Lấy điểm B(0;2) và P(0;5).
Ta có: OB=2, AB =1, MP=6 và PN=3.
Xét hai tam giác vuông OBA và MPN ta có: \(\frac{{OB}}{{MP}} = \frac{{AB}}{{PN}} = \frac{1}{3}\)
Do đó hai tam giác đồng dạng và OA // MN.
Suy ra \(\overrightarrow {OA} ,\;\overrightarrow {MN} \) cùng phương.
Hơn nữa, \(\overrightarrow {OA} ,\;\overrightarrow {MN} \) cùng hướng và MN = 3 OA.
b) Mỗi giờ, vật thể đó đi được quãng đường tương ứng với đoạn thẳng OA.
Vì \({MN} = 3. {OA} \) nên vật thể đó sẽ đi qua N sau 3 giờ kể từ lúc khởi hành.
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
a) Vật thể đi qua điểm \(A\left( {2;1} \right)\) và đi theo hướng vectơ \(\overrightarrow v \left( {3;4} \right)\).
b) Sau thời gian t thì vectơ vận tốc của vật thể là: \(t\overrightarrow v = \left( {3t;4t} \right)\).
Vậy tọa độ của vật thể sau thời gian t là: \(\overrightarrow {OA} + t\overrightarrow v = \left( {2 + 3t;1 + 4t} \right)\).
a) Vì \(\overrightarrow v = \left( {0; - 7} \right)\)nên \(\overrightarrow v = 0\overrightarrow i + \left( { - 7} \right)\overrightarrow j = - 7\overrightarrow j \)
b) Vì B có tọa độ là (-1; 0) nên \(\overrightarrow {OB} = \left( { - 1;{\rm{ }}0} \right)\). Do đó: \(\overrightarrow {OB} = \left( { - 1} \right)\overrightarrow i + 0\overrightarrow j = - \overrightarrow i \)
a) Vì \(\overrightarrow {OA} = \overrightarrow u = (x;y)\) nên A(x; y).
Tương tự: do \(\overrightarrow {OB} = \overrightarrow v = \left( {x';y'} \right)\) nên B (x’; y’)
b) Ta có: \(\overrightarrow {OA} = (x;y) \Rightarrow O{A^2} = {\left| {\overrightarrow {OA} } \right|^2} = {x^2} + {y^2}.\)
Và \(\overrightarrow {OB} = (x';y') \Rightarrow O{B^2} = {\left| {\overrightarrow {OB} } \right|^2} = x{'^2} + y{'^2}.\)
Lại có: \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \left( {x';y'} \right) - \left( {x;y} \right) = \left( {x' - x;y' - y} \right)\)
\( \Rightarrow A{B^2} = {\left| {\overrightarrow {AB} } \right|^2} = {\left( {x' - x} \right)^2} + {\left( {y' - y} \right)^2}.\)
c) Theo định lí cosin trong tam giác OAB ta có:
\(\cos \widehat O = \frac{{O{A^2} + O{B^2} - A{B^2}}}{{2.OA.OB}}\)
Mà \(\overrightarrow {OA} .\overrightarrow {OB} = \left| {\overrightarrow {OA} } \right|.\left| {\overrightarrow {OB} } \right|.\cos \left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = OA.OB.\cos \widehat O\)
\( \Rightarrow \overrightarrow {OA} .\overrightarrow {OB} = OA.OB.\frac{{O{A^2} + O{B^2} - A{B^2}}}{{2.OA.OB}} = \frac{{O{A^2} + O{B^2} - A{B^2}}}{2}\)
\(\begin{array}{l} \Rightarrow \overrightarrow {OA} .\overrightarrow {OB} = \frac{{{x^2} + {y^2} + x{'^2} + y{'^2} - {{\left( {x' - x} \right)}^2} - {{\left( {y' - y} \right)}^2}}}{2}\\ \Leftrightarrow \overrightarrow {OA} .\overrightarrow {OB} = \frac{{ - \left( { - 2x'.x} \right) - \left( { - 2y'.y} \right)}}{2} = x'.x + y'.y\end{array}\)
a)
b) Ta có: Tọa độ các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) lần lượt là: -5; 5
Ta có \(\overrightarrow {AB} = - \overrightarrow {CD} \)
Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) ngược hướng
A. Ta có: \(\overrightarrow u .\overrightarrow v = 2.4 + 3.6 = 26 \ne 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \) không vuông góc với nhau.
B. Ta có: \(\overrightarrow a .\overrightarrow b = 1.( - 1) + ( - 1).1 = - 2 \ne 0\) nên \(\overrightarrow a \) và \(\overrightarrow b \) không vuông góc với nhau.
C. Ta có: \(\overrightarrow z .\overrightarrow t = a.( - b) + b.a = 0\) nên \(\overrightarrow z \) và \(\overrightarrow t \) vuông góc với nhau.
Chọn đáp án C
D. Ta có: \(\overrightarrow n .\overrightarrow k = 1.2 + 1.0 = 2 \ne 0\) nên \(\overrightarrow n \) và \(\overrightarrow k \) không vuông góc với nhau.
Gọi \(M,N\) là vị trí của hai vật thể sau thời gian t.
Khi đó \(\overrightarrow {AM} = t.\overrightarrow {{v_A}} = (t;2t);\overrightarrow {BN} = t.\overrightarrow {{v_B}} = (t; - 4t)\)
\( \Rightarrow \)Sau thời gian t, vị trí của hai vật thể là \(M(t + 1;2t + 1),N(t - 1; - 4t + 21)\)
Nếu hai vật thể gặp nhau thì M phải trùng N với t nào đó
\(\begin{array}{l} \Leftrightarrow (t + 1;2t + 1) = (t - 1; - 4t + 21)\\ \Leftrightarrow \left\{ \begin{array}{l}t + 1 = t - 1\\2t + 1 = - 4t + 21\end{array} \right.\end{array}\)
\( \Leftrightarrow \left\{ \begin{array}{l}1 = - 1\\2t + 1 = - 4t + 21\end{array} \right.\)(Vô lí)
Vậy hai vật thể không gặp nhau.