K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Ta có:

\(a+b=c+d\)

\(\Leftrightarrow a+c=b+d\)

\(\Leftrightarrow-a+b-c+d=0\)

\(\Leftrightarrow P\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)

\(\Leftrightarrow-a+b-c+d=0\)

Vậy đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) có 1 trong nghiệm bằng \(-1\) nếu \(a+b=c+d\) (Đpcm)

8 tháng 11 2021

Bài 2: ta thấy A và B ở vị trí trong cùng phía , A + B = 180 độ =>a//b(1)

Ta lại thấy B , C ở vị trí đồng vị , B=C=70 độ =>b//c(2)

Từ 1,2 =>a//b//c

4 tháng 7 2017

bạn cho đề thiếu thì phải vì nếu 2 góc  BAC và  ACD kề bù thì AB không song song với CD

Bạn xem lại đề đi

4 tháng 7 2017

Làm sao để chụp đề vậy bạn. Để mình chụp cho

20 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

20 tháng 10 2016

theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\ cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)

22 tháng 9 2018

1.CMR:

a) 3.\(\left(x^2+y^2+z^2\right)-\left(x-y\right)^2\) \(-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)

21 tháng 1 2019

A B C D E M

CM: a) Do t/giác ABC cân tại A => AB = AC và góc B = góc C

Ta có : AD + DB = AB

        AE + EC = AC

và AD = AE(gt); AB = AC(cmt) 

=> DB = CE

Xet t/giác BDC và t/giác CEB

có DB = CE (cmt)

góc B = góc C (cmt)

BC : chung

=> t/giác BDC = t/giác CEB (c.g.c)

=> BE = DC (hai cạnh tương ứng)

b) Ta có: t/giác BDC = t/giác CEB (cmt)

=> góc BDC = góc BEC (hai góc tương ứng)

=> góc EBC = góc DCB (hai góc tương ứng)

Mà góc ABE + góc EBC = góc B

       góc ACD + góc DCB= góc C

 và góc B = góc C (cmt)

=> góc EBA = góc DCA

Xét t/giác BMD và t/giác CME

có góc BDM = góc CEM (cmt)

   DB = EC (Cmt)

  góc DBM = góc MCE(cmt)

=> t/giác BMD = t/giác CME(g.c.g)

c) Ta có: t/giác BMD = t/giác CME (cmt)

=> BM = CM (hai cạnh tương ứng)

Xét t/giác ABM và t/giác ACM

có AB = AC (cmt)

  BM = CM (cmt)

 AM : chung

=> t/giác ABM = t/giác ACM (c.c.c)

=> góc BAM = góc CAM (hai góc tương ứng)

=> AM là tia p/giác của góc BAC

21 tháng 1 2019

                                                                CM

a) Vì \(\Delta ABC\)cân tại A \(\Rightarrow\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(tinhchat\right)\\AB=AC\left(dinhnghia\right)\end{cases}}\)

Ta có:\(\hept{\begin{cases}AB=AC\\AD=AE\\AD+DB=AB;AE+EC=AC\end{cases}}\)\(\Rightarrow DB=EC\)

Xét \(\Delta BDC\)và \(\Delta CEB\)có:

           \(\hept{\begin{cases}DB=EC\left(cmt\right)\\\widehat{ABC}=\widehat{ACB\left(cmt\right)}\\BCchung\end{cases}}\)\(\Rightarrow\)\(\Delta BDC\)=\(\Delta CEB\)  (c-g-c)

\(\hept{\begin{cases}BE=CD\left(2canhtuongung\right)\\\widehat{BDC}=\widehat{BEC}\left(2canhtuongung\right)\\\widehat{B1}=\widehat{C1}\left(2goctuongung\right)\end{cases}}\)

    b) Xét \(\Delta MBC\)có \(\widehat{B1}=\widehat{C1}\left(cmt\right)\)

\(\Rightarrow\Delta MBC\)cân tại A

\(\Rightarrow MB=MC\left(tinhchat\right)\)

Ta có: \(\hept{\begin{cases}BE=CD\left(cmt\right)\\MB=MC\left(cmt\right)\\DM+MC=DC;ME+MB=EB\end{cases}}\)\(\Rightarrow DM=ME\)

Xét \(\Delta BMD\)và \(\Delta CME\)có:

            \(\hept{\begin{cases}\widehat{M1}=\widehat{M2}\left(2gocdoidinh\right)\\MD=ME\left(cmt\right)\\\widehat{BDC}=\widehat{BEC}\left(cmt\right)\end{cases}}\)\(\Rightarrow\Delta BMD=\Delta CME\)( g-c-g)

c) Bạn làm phần a và b trước nhé mình nghĩ phần c rồi nói

5 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)

Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)

5 tháng 7 2016

ta có;  a/b = c/d

  suy ra a/b - 1=c/d-1

           a-b/b=c-d/d(đpcm)