Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do y = ax và y = bx là hai hàm đồng biến nên a > 1; b > 1.
Do y = cx nghịch biến nên c < 1. Vậy c bé nhất.
Mặt khác: Lấy x = m, khi đó tồn tại y1; y2 > 0 để
Dễ thấy y1 < y2 ⇒ am < bm ⇒ a < b
Vậy b > a > c.
Chọn A
Chọn C
Đồ thị hàm số y = a x , y = b x là đồ thị của hàm số mũ cơ bản đồng biến nên a > 1; b > 1
Dựa vào đồ thị ta có :
Do đó: b > a > 1
Đồ thị hàm số y = c x là đồ thị của hàm số mũ cơ bản nghịch biến nên 0 < c < 1
Vậy b > a > c
Chọn A
Do y = logax và y = logbx là hai hàm đồng biến nên a > 1; b > 1
Do y = logcx nghịch biến nên c < 1 . Vậy c bé nhất.
Mặt khác: Lấy y = m, khi đó tồn tại x1; x2 > 0 để
Do y = logax và y = logbx là hai hàm dồng biến nên a > 1; b > 1
Do y = logcx nghịch biến nên c < 1. Vậy c bé nhất.
Mặt khác: Lấy y = m, khi đó tồn tại x1, x2 > 0 để
Chọn A
Đáp án C
Dựa vào hình vẽ, ta thấy rằng:
Hàm số y = ax là hàm số đồng biến; hàm số y = bx, y = cx là hàm số nghịch biến.
Suy ra a > 1 và 0 < b < 1 0 < c < 1 → a > b ; c
Gọi B(-1; yB) thuộc đồ thị hàm số y = b x ⇒ y B = 1 b
Và C(-1;yc) thuộc đồ thị hàm số y = c x ⇒ y C = 1 c
Dựa vào đồ thị, ta có y B > y c ⇒ 1 b > 1 c ⇒ c > b