Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là trọng tâm tam giác ABC
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất
\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung
\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)
Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)
\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)
a.
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{2-4}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{1+5}{2}=3\end{matrix}\right.\)
\(\Rightarrow I\left(-1;3\right)\)
b.
Do C thuộc trục hoành, gọi tọa độ C có dạng \(C\left(c;0\right)\)
Do D thuộc trục tung, gọi tọa độ D có dạng \(D\left(0;d\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c-2;-1\right)\\\overrightarrow{DB}=\left(-4;5-d\right)\Rightarrow2\overrightarrow{DB}=\left(-8;10-2d\right)\end{matrix}\right.\)
Để \(\overrightarrow{AC}=2\overrightarrow{DB}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c-2=-8\\-1=10-2d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-6\\d=\dfrac{11}{2}\end{matrix}\right.\)
Vậy \(C\left(-6;0\right)\) và \(D\left(0;\dfrac{11}{2}\right)\)
b) Điểm \(M\) thuộc trục tung nên tọa độ điểm \(M\) có dạng \(M\left(0;m\right)\).
\(N\) là trung điểm của \(AB\) suy ra \(N\left(1;4\right)\).
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{MN}\right|=2\sqrt{1^2+\left(m-4\right)^2}\ge2\sqrt{1}=2\)
Dấu \(=\) xảy ra khi \(m-4=0\Leftrightarrow m=4\).
Vậy \(M\left(0;4\right)\).
a) Trọng tâm \(G\) của tam giác \(ABC\):
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{4+2-2}{3}=\dfrac{4}{3},y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{3-1+5}{3}=\dfrac{7}{3}\).
Vậy \(G\left(\dfrac{4}{3};\dfrac{7}{3}\right)\) là trọng tâm tam giác \(ABC\).
Gọi \(M\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-x;1\right)\\\overrightarrow{MB}=\left(1-x;3\right)\\\overrightarrow{MC}=\left(-2-x;2\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}=\left(-2x+4;5\right)\)
\(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|=\sqrt{\left(-2x+4\right)^2+5}\ge\sqrt{5}\)
Dấu "=" xảy ra khi \(-2x+4=0\Leftrightarrow x=2\Rightarrow M\left(2;0\right)\)
Chắc bạn viết thiếu trị tuyệt đối, đề đúng của bài có dấu trừ người ta phải luôn cho là \(\left|MB-MA\right|\)
Gọi M là điểm bất kì trên Oy, áp dụng BĐT tam giác ta có:
\(\left|MB-MA\right|\le AB\Rightarrow\left|MB-MA\right|_{max}\) khi M;A;B thẳng hàng
Gọi \(M\left(0;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;2\right)\\\overrightarrow{AM}=\left(-4;y-1\right)\end{matrix}\right.\)
\(\Rightarrow\frac{-4}{-1}=\frac{y-1}{2}\Rightarrow y-1=8\Rightarrow y=9\Rightarrow M\left(0;9\right)\)