K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Chu vi mỗi hình lần lượt là: ( 6+1).2 = 14 và ( 3+ 2).2 = 10 ( đơn vị).

Diện tích hai hình bằng nhau và bằng: 6.1 = 3.2= 6 ( đơn vị diện tích) .

31 tháng 1 2017

Chu vi mỗi hình là 10 (đơn vị)

Diện tích hai hình lần lượt là: 3.2 = 6 và 4.1 = 4 ( đơn vị diện tích).

24 tháng 10 2015

Cắt một hình thoi theo đường kẻ xanh như hình vẽ trên, ta được 4 tam giác bằng nhau. Ghép 4 tam giác vào 4 góc của hình thoi còn lại như sau để được hình chữ nhật:

- Nhận xét:  

+ Diện tích hình chữ nhật = 2 lần diện tích hình thoi

+ Hình chữ nhật có chiều dài và chiều rộng là 2 đường  chéo của hìn thoi

=> Diện tích hình thoi = Diện tích hình chữ nhật : 2  = Tích 2 đường chéo của hình thoi : 2

 

 

24 tháng 10 2015

S = ( m . n ) : 2

S = ( đường chéo 1 nhân đường chéo 2 ) : 2

21 tháng 10 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

18 tháng 2 2019

Kết luận b sai

23 tháng 2 2017

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2)

Hình chữ nhật có kích thước là 1cm x 12cm có diện tích là 12cm2 và chu vi là (1 + 12).2 = 26 (cm) (có 26 > 15)

Hình chữ nhật kích thước 2cm x 7cm có diện tích là 14cm2 và chu vi là (2 + 7).2 = 18 (cm)

(có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

b) + Chu vi hình chữ nhật ABCD đã cho là (5 + 3).2 = 16 cm

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là: 16 : 4 = 4 cm

Diện tích hình vuông này là 4.4 = 16 cm2

(Ở trên hình là ví dụ hình vuông MNPQ có cạnh là 4cm)

Vậy SHCN < SHV

+ Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

Gọi cạnh của hình chữ nhật có độ dài lần lượt là a, b.

Hình vuông có cùng chu vi với hình chữ nhật nên cạnh hình vuông là Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 15 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ Hình vuông có diện tích lớn nhất.

21 tháng 4 2017

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI

Hướng dẫn giải:

a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).

- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).

- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).

Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.

b) Chu vi hình chữ nhật ABCD đã cho là:

(5+3).2 = 16 (cm)

Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:

16:4 = 4(cm).

Diện tích hình vuông này là 4.4 = 16 (m2)

Vậy Shcn < Shv

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.

Ta luôn có ≥ √ab

Suy ra ab ≤ .

Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .

Trên hình a= 5cm, b = 3cm, = 4cm

a - = 1cm, - b = 1cm

Do đó

SEBCG = b. ( a- ) = 3.1 = 3 (cm2).

SDGHI = . ( - b ) = 4.1 = 4 (cm2).

SAEGD = b. = 3.4 = 12 (cm2).

Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).

SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).

Vậy SABCD < SAEHI

Tổng quát:

Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.

Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .

Mà a - bằng - b và b < ( theo giả thiết a> b)

nên SEBCG < SDGHI

Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được

SEBCG + SAEGD < SDGHI + SAEGD

Vậy SABCD < SAEHI



3 tháng 5 2019

Gọi cạnh hình vuông là a (cm) thì diện tích hình vuông là a^2 (cm^2)

Chiều dài hình chữ nhật là a+4 (cm) , chiều rộng  hình chữ nhật là a-3 (cm) thì diện tích hình chữ nhật là (a+4)(a-3) (cm^2)

ĐK : a >3

Vì diện tích hai hình bằng nhau nên ta có phương trình :

a^2= (a-3)(a+4)

<=> a^2= a^2+a-12

<=> a=12 (t/m đk)

Vậy chu vi hình chữ nhật là (12-3)(12+4)=144 (cm^2)

3 tháng 5 2019

Gọi chiều dài vuông là x (x > 3) (cm)

=> Diện tích vuông là: x2 (cm2)

=> Chiều rộng hcn là: x - 3 (cm)

=> Chiều dài hcn là: x + 4 (cm)

=> Diện tích hcn là (x - 3)(x + 4)

Ta có phương trình sau:

x2 = (x - 3)(x + 4)

<=> x2 = x2 + x - 12

<=> x = 12 (cm)

=> Chiều dài hcn là 16 cm

=> Chiều rộng hcn là 9 cm

=> Chu vui hcn là (16 + 9) . 2 = 50 (cm)

Vậy...