K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
15 tháng 5 2021

4) Ta có: \(AM//PQ\)( cùng vuông góc với OC )

Xét tam giác COQ có: \(EM//OQ\)

\(\Rightarrow\frac{CE}{CO}=\frac{EM}{OQ}\)( hệ quả của định lý Ta-let )  (1) 

Xét tam giác COP có: \(AE//OP\)

\(\Rightarrow\frac{CE}{CO}=\frac{AE}{OP}\)( hệ quả của định lý Ta-let ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{EM}{OQ}=\frac{AE}{OP}\)Mà AE=EM

\(\Rightarrow OQ=OP\)

Xét tam giác CPQ và tam giác COP có chung đường cao hạ từ  C, đáy \(OP=\frac{PQ}{2}\)

\(\Rightarrow S_{\Delta CPQ}=2.S_{\Delta COP}\)

Ta có: \(S_{\Delta COP}=\frac{1}{2}OA.CP=\frac{1}{2}R.CP\)

Áp dụng hệ thức lượng trong tam giác COP vuông tại O có đường cao OA ta có:

\(OA^2=CA.AP\)

Mà \(CA.AP\le\frac{\left(CA+AP\right)^2}{4}=\frac{PC^2}{4}\)( BĐT cô-si )

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\)

\(\Rightarrow PC^2\ge4OA^2\)

\(\Rightarrow PC\ge2OA=2R\)

\(\Rightarrow S_{\Delta COP}\ge R^2\)

\(\Rightarrow S_{\Delta CPQ}\ge2R^2\)

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\) 

Mà tam giác COP vuông tại O có đường cao OA

\(\Rightarrow AC=AP=OA=R\)

Khi đó áp dụng định lý Py-ta-go vào tam giác CAO vuông tại A ta được:

\(AC^2+AO^2=OC^2\)

\(\Rightarrow OC=\sqrt{AC^2+AO^2}=R\sqrt{2}\)

Vậy điểm C thuộc đường thẳng d sao cho \(OC=R\sqrt{2}\)thì diện tích tam giác CPQ nhỏ nhất 

15 tháng 5 2021

giải hộ mik câu 4 nhé thanks

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O) e) Đường thẳng qua D  song song...
Đọc tiếp

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Cho điểm A nằm ngoài đường tròn (O;R), từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE (B, C là hai tiếp điểm, O nằm trong góc BAE). BC cắt OA tại I 
a) Chứng minh: tứ giác ABOC nội tiếp và OA vuông góc với BC 
b) Chứng minh OI.IA=(BC^2)/4 và AB.AC = AD.AE 
c) Vẽ đường kính BK của (O), Tia KD cắt OA tại F. Chứng minh FB vuông góc với EB 
d) Gọi H là trung điểm của DE, từ B kẻ dây BN song song với DE. Chứng minh 3 điểm N, H, C thẳng hàng. 

3. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

Giúp em giai  cau 1 d, cau 2 c, câu 3 c , cảm ơn nhiều

2
14 tháng 4 2016
2c. ta co goc CAO=OAB=OBC=KDC(goc noi tiep chan cung KC) =>tu giac CDFA noi tiep =>goc ADF=ACF lai co goc ADF=KDE=EBK (goc noi tiep chan cung EK) goc ACF=ABF ( B,C doi xung qua OA) =>goc EBK=ABF ma ABF + KBF =90 => EBK+KBF =90 => EBF=90 =>EB vuong goc voi BF
15 tháng 4 2016

cam on ban nha

con cau 3c giup minh duoc ko

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)a, Chứng minh MA. MB = ME.MFb, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếpc, Trên nửa mặt phẳng bờ OM có chứa...
Đọc tiếp

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)

a, Chứng minh MA. MB = ME.MF

b, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếp

c, Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh các đường thẳng MSKC vuông góc nhau

d, Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFSABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng

1
20 tháng 9 2018

a, HS tự chứng minh

b, MH.MO = MA.MB ( =  M C 2 )

=> ∆MAH:∆MOB (c.g.c)

=>  M H A ^ = M B O ^

M B O ^ + A H O ^ = M H A ^ + A H O ^ = 180 0

=> AHOB nội tiếp

c, M K 2  = ME.MF = M C 2  Þ  MK = MC

∆MKS = ∆MCS (ch-cgv) => SK = SC

=> MS là đường trung trực của KC

=> MS ^ KC tại trung của CK

d, Gọi MS ∩ KC = I

MI.MS = ME.MF =  M C 2  => EISF nội tiếp đường tròn tâm P Þ PI = PS. (1)

MI.MS = MA.MB (=  M C 2 ) => AISB nội tiếp đường tròn tâm Q Þ QI = QS. (2)

Mà IT = TS = TK (do DIKS vuông tại I). (3)

Từ (1), (2) và (3) => P, T, Q thuộc đường trung trực của IS => P, T, Q thẳng hàng