Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
Pt hoành độ giao điểm:
\(3x^2+2\left(m+1\right)x-1=0\) (1)
\(ac=-3< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) tại 2 điểm pb với mọi m
Do \(x_1;x_2\) là nghiệm nên: \(\left\{{}\begin{matrix}3x_1^2+2\left(m+1\right)x_1-1=0\\3x_2^2+2\left(m+1\right)x_2-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)x_1=\frac{1-3x_1^2}{2}\\\left(m+1\right)x_2=\frac{1-3x_2^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(m+1\right)\left(x_1+x_2\right)=1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2\)
\(f\left(x_1\right)-f\left(x_2\right)=x_1^3-x_2^3+\left(m+1\right)\left(x_1^2-x_2^2\right)-\left(x_1-x_2\right)\)
\(=\left(x_1-x_2\right)\left(x^2_1+x_2^2+x_1x_2+\left(m+1\right)\left(x_1+x_2\right)-1\right)\)
\(=\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2+1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2-1\right)\)
\(=-\frac{1}{2}\left(x_1-x_2\right)\left(x_1^2+x_2^2-2x_1x_2\right)=-\frac{1}{2}\left(x_1-x_2\right)^3\)
a.
pthdgd
x^2-mx-2=0
∆=m^2+2>o moi m
c/a=-2<0
=>x1<0<x2 moi m => dpcm
x1, x2 là 2 nghiệm của phương trình \(x^2+mx-5=0\)
\(\Delta=m^2+20\ge0\) do đó tồn tại x1, x2 với mọi m
\(\Rightarrow y_1=mx_1-5;y_2=mx_2-5\)
\(\Rightarrow\left(mx_1-5\right)x_2+\left(mx_2-5\right)x_1=2015\\ \Leftrightarrow2mx_1x_2-5\left(x_1+x_2\right)=2015\)
Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-5\end{matrix}\right.\)
\(\Rightarrow-10m+5m=2015\Leftrightarrow m=-403\)
Pt hoành độ giao điểm: \(\frac{1}{2}x^2=mx+2\Leftrightarrow x^2-2mx-4=0\)
\(x_1x_2=-4< 0\Rightarrow x_1;x_2\) trái dấu
Mà \(\left|x_1\right|=4\left|x_2\right|\Rightarrow x_1=-4x_2\)
Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1x_2=-4\\x_1=-4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-4x_2^2=-4\\x_1=-4x_2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x_1=-4;x_2=1\\x_1=4;x_2=-1\end{matrix}\right.\)
Mà \(x_1+x_2=2m\Rightarrow m=\frac{x_1+x_2}{2}\Rightarrow\left[{}\begin{matrix}m=-\frac{3}{2}\\m=\frac{3}{2}\end{matrix}\right.\)
a)Hoành độ giao điểm của (P)và (d) là:
\(\frac{1}{2}x^2=x+4\)
\(\Leftrightarrow x^2=2x+8\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)
Thay \(x=-2\)vào (d) ta được:
\(y=-2+4=2\)
Thay \(x=4\)vào (d)ta được:
\(y=4+4=8\)
Vậy \(A\left(-2;2\right),B\left(4;8\right)\)hoặc \(A\left(4;8\right),B\left(-2;2\right)\)
b)Mk ko bt làm
Phương trình hoành độ giao điểm:
\(\frac{x^2}{2}=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)
(P) tiếp xúc \(\left(d'\right)\Leftrightarrow\left(1\right)\) có nghiệm kép
\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)