Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do At là phân giác của góc xAy
=>xAt=yAt
Xét TG(tam giác) ADB và TG CDA có:
AB=AC (GT)
xAt=yAt( chứng minh trên)
AD là cạnh chung
=>TG(tam giác) ADB = TG CDA (c.g.c)
Các cặp cạnh và góc tương ứng bằng nhau
Giải:
a) Xét \(\Delta ACD,\Delta ABE\) có:
AC = AB ( gt )
\(\widehat{A}\): góc chung
AD = AE ( gt )
\(\Rightarrow\Delta ACD=\Delta ABE\left(c-g-c\right)\) ( đpcm )
b) Vì \(\Delta ACD=\Delta ABE\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )
hay \(\widehat{IBD}=\widehat{ICE}\) ( đpcm )
Vậy...
a, xét t.giác ABM và t.giác ACM có:
AB=AC(gt)
AM cạnh chung
=> t.giác ABM=t.giác ACM(CH-CGV)
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
cat ax o e