K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{A}{B}=\dfrac{3x^4+3x^2+x^3+x-3x^2-3+5x-2}{x^2+1}=3x^2+x-3+\dfrac{5x-2}{x^2+1}\)

Để A chia hết cho B thì \(\left(5x-2\right)\left(5x+2\right)⋮x^2+1\)

\(\Leftrightarrow25x^2-4⋮x^2+1\)

\(\Leftrightarrow25x^2+25-29⋮x^2+1\)

\(\Leftrightarrow x^2+1\in\left\{1;29\right\}\)

hay \(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)

15 tháng 12 2016

Bài 2:

a)\(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b)\(x^2-2x-15\)

\(=x^2-5x+3x-15\)

\(=x\left(x-5\right)+3\left(x-5\right)\)

c)\(y\left(x-z\right)+7\left(z-x\right)\)

\(=7\left(z-x\right)-y\left(z-x\right)\)

\(=\left(7-y\right)\left(z-x\right)\)

\(=\left(x-5\right)\left(x+3\right)\)

d)\(36-12x+x^2\)

\(=x^2-12x+36\)

\(=\left(x-6\right)^2\)

15 tháng 12 2016

Bài 1:

a)\(2x\left(x^2-7x-3\right)=2x^3-14x^2-6x\)

b)\(\left(-2x^3+34y^2-7xy\right)\cdot4xy^2=136xy^4-28x^2y^3-8x^4y^2\)

c)\(\left(x^2-2x+3\right)\left(x-4\right)\)

\(=x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)\)

\(=x^3-4x^2-2x^2+8x+3x-12\)

\(=x^3-6x^2+11x-12\)

d)\(\left(2x^3-3x-1\right)\left(5x+2\right)\)

\(=5x\left(2x^3-3x-1\right)+2\left(2x^3-3x-1\right)\)

\(=10x^4-15x^2-5x+4x^3-6x-2\)

\(=10x^4+4x^3-15x^2-11x-2\)

 

Phần 1 : Trắc nghiệm : ( 3 điểm ) Câu 1: Chọn câu đúng trong các khẳng định sau.a) ( a - b )3 = ( b – a )3 b) ( x + 2 )2 – ( x + 5 )( x – 5 ) Rút gọn bằng 4x – 21 c) Kết quả của phép chia (-x)6 : x3 là x3 d) Nếu 2x3 – 2x = 0 thì x = 0 hoặc x = 1 hoặc x = -1 Câu 2: Chọn đáp án đúng ; Hình vuông là : a) Tứ giác có 4 cạnh...
Đọc tiếp

Phần 1 : Trắc nghiệm : ( 3 điểm )

Câu 1: Chọn câu đúng trong các khẳng định sau.

a) ( a - b )3 = ( b – a )3

b) ( x + 2 )2 – ( x + 5 )( x – 5 ) Rút gọn bằng 4x – 21

c) Kết quả của phép chia (-x)6 : x3 là x3

d) Nếu 2x3 – 2x = 0 thì x = 0 hoặc x = 1 hoặc x = -1

Câu 2: Chọn đáp án đúng ;

Hình vuông là :

a) Tứ giác có 4 cạnh bằng nhau.

b) Tứ giác có 4 góc bằng nhau.

c) Hình chữ nhật có 2 đường chéo bằng nhau

d) Hình chữ nhật có 2 cạnh bằng nhau.

e) Hình thoi có một góc vuông.

f) Tứ giác có 2 đường chéo vuông góc với nhau và bằng nhau.

Phần 2: Tự luận : ( 7 điểm )

Câu 1: Phân tích đa thức thành nhân tử : ( 2 điểm )

a) 2008a2 – 2008b2

b) x2 – 8x + 15

Câu 2: Cho M = ( x + 3)( x – 3) – ( x + 2)2 – 2( x2 – 4,5 ) ( 2 điểm )

a) Rút gọn biểu thức M

b) Tìm x để M = 0

Câu 3 : ( 3 điểm )

Cho DABC ; M nằm giữa BC. Từ M kẻ đường thẳng song song với AB và AC thứ tự cắt AC và AB tại D và E.

a) Tứ giác AEMD là hình gì ? Vì sao ?

b) Tìm điều kiện của M để tứ giác AEMD là hình thoi ( vẽ hình minh họa ).

c) Tìm điều kiện của DABC để tứ giác AEMD là hình chữ nhật .

 

2
30 tháng 10 2016

Phần I

Câu 1: c,d

Câu 2: e

Phần II

Câu 1:

a, 2008a2-2008b2=2008(a2-b2)=2008(a-b)(a+b)

b, x2-8x+15=x2-3x-5x-+15=x(x-3)-5(x-3)=(x-5)(x-3)

Câu 2:

a, M= (x-3)(x+3)-(x+2)2-2(x2-4,5)

M= x2-9-(x2+4x+4)-2x2+9

M= x2-9-x2-4x-4-2x2+9

M= -2x2-4x-4

M= -2(x2+2x+2)b, Để M=0 -> -2(x2+2x+2)=0->x2+2x+2=0

30 tháng 10 2016

Phần 1:

Câu 1: D

Câu 2: E

Phần 2:

Câu 1:

\(A=2008a^2-2008b^2\)

\(=2008\left(a^2-b^2\right)\)

\(=2008\left(a-b\right)\left(a+b\right)\)

\(B=x^2-8x+15\)

\(=x^2-3x-5x+15\)

\(=x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x-5\right)\)

Câu 2:

\(M=\left(x-3\right)\left(x+3\right)-\left(x+2\right)^2-2\left(x^2-4,5\right)\)

\(=x^2-9-x^2-4x-4-2x^2+9\)

\(=-2x^2-4x-4\)

\(=-2\left(x^2+2x+2\right)\)

\(=-2\left[\left(x^2+2x+1\right)+1\right]\)

\(=-2\left[\left(x+1\right)^2+1\right]\)

\(=-2-2\left(x+1\right)^2\le-2< 0\)

Vậy không có giá trị nào của x thoả mãn yêu cầu.

27 tháng 10 2016

Bài 1:

1 (x+3)2=x2+6x+9

2

a, 2x2(3x-5x3)+10x5-5x3=6x3-10x5+10x5-5x3=x3

b, (x+3)(x2-3x+9)+(x-9)(x+3)=(x3+27)+(x2-6x-27)=x3+x2-6x

Bài 2:

a, x2-25x=0

\(\Leftrightarrow x\left(x-25\right)=0\)

\(\Leftrightarrow\begin{cases}x=0\\x-25=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\x=25\end{cases}\)

b, (4x-1)2-9=0

\(\Leftrightarrow\left(4x-1-3\right)\left(4x-1+3\right)=0\)

\(\Leftrightarrow\left(4x-4\right)\left(4x+2\right)=0\)

\(\Leftrightarrow4\left(x-1\right)2\left(2x+1\right)=0\)

\(\Leftrightarrow8\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\2x+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}\)

Bài 3:

a, 3x2-18x+27=3(x2-6x+9)=3(x-3)2

b, xy-y2-x+y=y(x-y)-(x-y)=(y-1)(x-y)

c, x2-5x-6=x2-6x+x-6=x(x-6)+(x-6)=(x+1)(x-6)

Bài 4:

a, ( 12x3y3-3x2y3+4x2y4):6x2y3=(12x3y3:6x2y3)-(3x2y3:6x2y3)+(4x2y4:6x2y3)

=2x-1/2 + 2/3y

b, bạn ơi mình không biết cách vẽ đường kẻ để chia ý , nếu bạn biết thì chỉ cho mình rồi mình làm cho

Bài 5 :

b, A = x(2x-3)

A= 2x2-3x

A= 2(x2-3/2x)

A= 2(x2-2x3/4+9/16-9/16)

A=2[(x-3/4)2-9/16]

A=2(x-3/4)2-9/8

A=2(x-3/4)2+(-9/8)

Vì (x-3/4)2 \(\ge\)0 \(\forall x\)

-> 2(x-3/4)2 \(\ge0\forall x\)

-> 2(x-3/4)2+(-9/8)\(\ge-\frac{9}{8}\forall x\)

Vậy MinA= -9/8

6 tháng 1 2017

Bài 1:

1. Khai triển hằng đẳng thức

(x+3)2 = x2+6x+9

2. Thực hiện phép tính

a) 2x2(3x-5x3)+10x5-5x3

=6x3-10x5+10x5-5x3

=x3

b)(x+3)(x2-3x+9)+(x-9)(x+3)

=(x3+27)+(x2+3x-9x-27)

=x3+27+x2+3x-9x-27

=x3+x2-6x

Bài 2:

a) x2-25x=0

\(\Leftrightarrow\)x(x-25)=0

\(\Leftrightarrow\) \(\left[\begin{matrix}x=0\\x-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=0\\x=25\end{matrix}\right.\)

Vậy x=0 hoặc x=25

b)(4x-1)2 - 9=0

\(\Leftrightarrow\)(4x-1+3)(4x-1-3)=0

\(\Leftrightarrow\)(4x+2)(4x-4)=0

\(\Leftrightarrow\)2(2x+1)(2x-2)=0

\(\Leftrightarrow\left[\begin{matrix}2x+1=0\\2x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=\frac{-1}{2}\\x=1\end{matrix}\right.\)

Vậy x=1 hoặc x=\(\frac{-1}{2}\)

Bài 3:

a) 3x2-18x+27

=3(x2-6x+9)

=3(x-3)2

b) xy-y2-x+y

=(xy-y2)-(x-y)

=y(x-y)-(x-y)

=(x-y)(y-1)

c) x2-5x-6

=x2-6x+x-6

=(x2-6x)+(x-6)

=x(x-6)+(x-6

=(x-6)(x+1)

Bài 4:

a) (12x3y3-3x2y3+4x2y4) : 6x2y3

=x2y3(12x-3+4y): 6x2y3

=(12x-3+4y) : 6

= (12x : 6)-(3 : 6)+(4y : 6)

=2x-\(\frac{1}{2}\)+\(\frac{2y}{3}\)

b) (6x3-19x2+23x-12) : (2x-3)

=(3x2-5x+4)(2x-3) : (2x-3)

=3x2-5x+4

a) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

b) \(-x^2+2xy-y^2=-\left(x-y\right)^2\)

c) \(-4x^4-4x^2=-4x^2\left(x^2-1\right)=-4x^2\left(x-1\right)\left(x+1\right)\)

d) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=\left(\dfrac{1}{3}x-1\right)^2\)

e) \(\left(4x^2+1\right)^2-16x^2=\left(4x^2+1+4x^2\right)\left(4x^2+1-4x^2\right)=8x^2+1\)

f) \(16x^2-\left(x^2+4\right)^2=\left(4x^2+x^2+4\right)\left(4x^2-x^2-4\right)=\left(5x^2+4\right)\left(3x^2-4\right)\)

g) \(x^2+6x^2+12x+8=\left(x+2\right)^3\)

h) \(27x^3-54x^2+36x-8=\left(3x-2\right)^3\)

i) \(x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)^3\)

k) \(0,125x^3-0,75x^2+1,5x-1=\left(0,5-1\right)^3\)

13 tháng 9 2018

thanks nha