K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

4] 
tg DEC ~ tg DCB 
=> EC/BC = DC/DB 
=> EC = BC.DC/DB 
=> AC.EC = AC.BC.DC/DB = 2S(ACB).DC/DB 
Cần c/m AF.CH = AC.EC 
<=> AF.CH = 2S(ACB).DC/DB 
<=> AE.DB = 2S(ACB).DC/CH (*) 
Mà 2S(ACB)/CH = AB 
=> (*) <=> AE.DB = AB.DC = AB.DA 
Mà AE.DB = 2S(ADB); AB.DA = 2S(ADB) 
Vậy: AF.CH = AC.EC 

5] 
Ta đi c/m KA=KD để suy ra KE là tiếp tuyến. 
AE kéo dài CH tại M 
=> AK/CM = KI/IC 
=> KD/CH = KI/IC 
=> AK/CM = KD/CH (*) 

DP cắt CH tại P; BC cắt AD tại J 
=> HP/AD = BP/BD = CP/DJ (**) 
Tam giác ACJ vuông tại C, AD=AD => DC là trung tuyến => AD=DJ 
Từ (**) => HP=PC 

Xét 2 tg vuông AMH và HBP, ta có ^AMH = ^HBP (cạnh tương ứng vuông góc) 
=> tg AMH ~ HBP 
=> MH/AH = HB/PH 
=> MH = AH.HB/PH = AH.HB/(CH/2) = 2AH.HB/CH (***) 
Do CH^2 = AH.HB => AH.HB/CH = CH 
Từ (***) => MH = 2CH => CM =CH 
Từ (*) => AK =KD 
=> KE là trung tuyến tg vuông ADE => ka=ke 
=> tg OKA = tg OKE (do OA=OE, OK chung; AK=KD) 
=> ^KEO = ^KAO = 90 
=> KE là tiếp tuyến của (O)

24 tháng 12 2018

O A B x y C C E F D I H K

a, Theo t/c tiếp tuyến của đường tròn

 EA = EC

 FC = FB

=>  EC + CF = EA + BF

=> EF  = AE + BF

b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)

=> \(\Delta\)ABC vuông tại C

=> AC \(\perp\)BC

Xét \(\Delta\)DAB vuông tại  A có AC là đường cao

=> \(AD^2=DC.DB\)(Hệ thức lượng)

c,Chưa ra, mai nghĩ ra thì giải cho ^^

4 tháng 12 2017

A B O C E F D I H K M J

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC

Vậy nên AE + BF = EC + CF = EF

b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:

\(DA^2=DC.DB\)

c)  Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)

Lại có AB = 2OB; AC = 2AH.

Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)

Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )

Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)

Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)

Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)

\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)

\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)

d) Từ A kẻ AJ song song với BD cắt BF tại J.

Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.

Vậy ta có D, O , J  thẳng hàng.

Xét tam giác AFJ có \(AB\perp FJ\)

\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)

Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\)  (1)

Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.

Vậy thì \(AM\perp IO\)   (2)

Từ (1) và (2) suy ra A, M , F thẳng hàng.

27 tháng 4 2021

giúp em với năn nỉ m,n 

25 tháng 2 2020

Giúp mình với ạ <3 

26 tháng 2 2020

d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D

co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)

ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)

suy ra \(\Delta CED\) deu => EC=CD (1)

mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)

=> tam giac CDF can tai C

suy ra CD=CF (2)

tu (1),(2) suy ra dpcm